

COMPUTERS - VIDEO - STEREO - TECHNOLOGY - SERVICE
Biilld this C-QUAM
SHMR
for your ratio
All ahout
FOHE ANAMYABS and how to use fhemi

Builid a
SHMGHEIG ADAPHMP for letiter-quality printouls

PLIS:

\star Hothy Gorner \star Envinuman Renopros

* Drawing Boari $*$ Service Plinic
* New lifea \star State-0ifsoliid-State

Here's a flat-panel scope, a transient recorder, and a 32 -range DMM in a compact 4 lb . box.
Now you can use one instrument to capture $2 \mu \mathrm{~s}$ transients, evaluate their waveform characteristics on a flat-panel LCD, and simultaneously measure their true RMS values.
It's all made possible with the first in a new class of instruments from BBC, the Digital Scope Multimeter, Model M 2050 DSM. By applying precision European engineering to the measurement needs of design and service engineers, BBC is revolutionizing test and measurement.

Large Flat-Paneled Scope Display

The LCD provides excellent resolution, 128 dots by 64 dots, for waveform displays. It measures $4-5 / 8 \mathrm{in}$. (118 mm) $\times 1-5 / 8 \mathrm{in}$. (42 mm). Simultaneous display capabilities let you use the scope portion of the LCD to evaluate signal characteristics while the DMM portion displays the true RMS signal value. Your measurement evaluations will be more accurate and consistent.

Transient Recording

Two independent memories of 512 words (horizontal dots) with 8-bit vertical resolution let users capture information about events ranging from $2 \mu \mathrm{~s}$ to $1-\mathrm{hr}$ in duration. Five selectable trigger points (0 , $25 \%, 30 \%, 75 \%$, and 100%) give users options as to how much data is stored before and after the triggering event.

True RMS Multimeter Measurements

You get 15 voltage ranges (to 650V), 15 current ranges (to 10A), and two resistance ranges (200Ω and $20 \mathrm{k} \Omega$). True RMS and Averaging RMS modes are switch selectable. All ranges are overloadprotected (Spikes to 6,000 V or 60A).

Performance Packed and

 PortableAn impact resistant case protects the M 2050 DSM. When open, the display angle is easily adjustable. When closed, the display and the controls are protected, the meter shuts itself off, and the tilt bail becomes a carrying handle.

Affordable and Available

The price of the M 2050 DSM is only $\$ 1,795.00$ (for the optional analog output, add $\$ 200.00$). Rechargeable batteries for 8 hours of portable operation are available for $\$ 35.00$
BBC's M 2050 DSM and other innovative instruments are available via select distributors throughout the U.S. If your instrumentation supplier doesn't carry BBC yet, we'll gladly tell you who does. Call toll free:

> 1-800-821-6327
(\ln CO, 303-469-5231)
BBC-Metrawatt/Goerz
6901 W. 117th Avenue
Broomfield, CO 80020, Telex 45-4540
Engineering Excellence in Test and Measurement

Regency Scanners Bring you the Excitement of Police, Fire, Emergency Radio, and more.

Our radios deliver the local news. From bank hold-ups to three alarm fires. It's on-the-scene action. While it's happening from where it's happening . . . in your neighborhood.
You can even listen to weather, business and marine radio calls. Plus radio telephone conversations that offer more real life intrigue than most soap operas. And with our new model MX5000, there's even more.

UNIQUE CAPABILITIES

Introducing the all new Regency MX5000, a 20 channel, no-crystal scanner

continuously from 25 MHz to 550 MHz . That's right! Continuous coverage that includes CB, VHF and UHF television audio, FM Broadcast, and civil and military aircraft bands. Plus a host of other features like keyboard entry, a multifunction liquid crystal display that's sidelit for night use, selectable search frequency increments, and a digital clock.

PRACTICAL

PERFORMANCE

Another new addition to the Regency line is the 30 channel MX3000. It's digitally synthesized so no crystals are necessary, and the pressure sensitive keyboard makes programming simple. What's more, it has a full function digital readout, priority, search and scan delay, dual scan speed,
and a brightness switch for day or night operation.

AT HOME OR ON THE ROAD

With the compact design, slanted front panel, and mounting bracket the MX3000 and MX5000 are ideal for mobile* use. But we also supply each radio with a plug-in transformer and a telescoping antenna so you can stay in touch at home.
See your Regency Scanner Authorized Dealer for a free demonstration on these and other new Regency Scanners. Or, write Regency Electronics, 7707 Records Street, Indianapolis, IN 46226.

Communications Electronics,", the world's largest distributor of radio scanners, introduces new models with special savings on all radio scanners. Chances are the police, fire and weather emergencies you'll read about in tomorrow's paper are coming through on a scanner today.
We give you excellent service because CE distributes more scanners worldwide than anyone else. Our warehouse facilities are equipped to process thousands of scanner orders every week. We also export scanners to over 300 countries and military installations. Almost all items are in stock for quick shipment, so if you're a person who prefers fact to fantasy and who needs to know what's really happening around you, order your radio today from CE.

NEW! Regencyị MX3000

List price s299.95/CE price s199.00
e-Bend, so Chamnol P No-crystal soanner Search © Lockout © Priority © AC/DC Bands: $30-50,144-174,440-512 \mathrm{MHz}$. The Regency Touch MX3000 provides the ease of computer controlled, touch-entry programming in a compact-sized scanner for use at home or on the road. Enter your favorite public service frequencies by simply touching the numbered pressure pads. You'll even hear a "beep" tone that lets you know you've made contact.

In addition to scanning the programmed channels, the MX3000 has the ability to search through as much as an entire band for an active frequency. The MX3000 includes channel 1 priority, dual scan speeds, scan or search delay and a brightness switch for day or night operation.
NEW! Regency ${ }^{\text {® }}$ HX650
List price S119.95/CE prico s84.00
5 -Band, 6 Channel \bullet Handheld crystal scanner Bands: $30-50,146-174,450-512 \mathrm{MHz}$ Now you can tune in any emergency around town, from wherever you are, the second it happens. Advanced circuitry gives you the world's smallest scanner. Our low CE price includes battery charger/A.C. adapter.

NEW! Regency ${ }^{\text {® }}$ MX7000

Allow 120-240 days for delivery after receipt of order due to the high demand for this product. List price \$599.95/CE price \$449.00
10-Band, 20 Channel - Crystalless • AC/DC Frequency range: 26-27, 30-108, 108-136 AM, $144-174,440-512,806-881 \mathrm{MHz}, 1.0 \mathrm{GHz}, 1.1 \mathrm{GHz}$ In addition to normal scanner listening, the MX7000 offers CB, VHF, and UHF TV audio, FM Broadcast, all aircraft bands (civil and military), 800 MHz communications, cellular telephone, and when connected to a printer or CRT, satellite weather pictures.

8-Band, 16 Channel o No-crystal scanner Quartz Clock • AM/FM • AC/DC Bands: $26-88,108-180,380-514 \mathrm{MHz}$ Tune Military, F.B.I., Space Satellites, Police \& Fire, D.E.A., Defense Department, Aeronautical AM band, Aero Navigation Band, Fish \& Game, Immigration, Paramedics, Amateur Radio, Justice Department, State Department, plus thousands of other restricted radio frequencies no other scanner is programmed to pick up.
NEW! JIL SX-100
CE price \$134.00/NEW LOW PRICE
G-Band, 16 Channel - Crystalless AC/DC Frequency range: $30-54,140-174,410-514 \mathrm{MHz}$. The JIL SX-100 scanner is a mobile keyboard programmable scanner that puts you in the seat of the action at home or in your car. Compact and good looking, the SX-100 even gives you the time and date. It's small size will easily fit in most domestic or foreign cars and it's AC/DC adaptable for home use.

Regency ${ }^{\oplus}$ HX1000

Allow 90-180 days for delivery after receipt of order due to the high demand for this product. List price \$329.95/CE price \$209.00 6-Band, 20 Channel - No Crystal scanner Soarch © Lockout - Priority - Scan delay Sidelit liquid orystal display
Srequency range: $30-50,144-174,440-512 \mathrm{MHz}$. Frequency range: $30-50,144-174,440-512 \mathrm{MHz}$.
The new handheld Regency HX 1000 scanner is fully keyboard programmable for the ultimate in versatility. You can scan up to 20 channels at the same time. When you activate the priority control, you automatically override all other calls to listen to your favorite frequency. The LCD display is even sidelit for night use. A die-cast aluminum chasis makes this the most rugged and durable hand-held scanner available. There is even a backup lithium battery to maintain memory for two years. Includes wall charger, carrying case, belt clip, flexible antenna and nicad battery. Reserve your Regency HX1000 now.

Regency ${ }^{\circledR}$ R106

List price $\$ 149.95 / C E$ price $\$ 99.00$
5 -Band, 10 Channel © Crystal scanner © AC/DC Frequency range: $30-50,146-174,450-512 \mathrm{MHz}$. A versatile scanner, The Regency $R-106$ is built to provide maximum reception at home or on the road. Rugged cabinet protects the advanced design circuitry allowing you years of dependable listening.

NEW! Regency ${ }^{\text {D }}$ D10
 List price $\$ 399.95 / \mathrm{CE}$ price $\$ 259.00$

B-Band, 50 Channel © Crystalless © AC only Bands: $30-50,88-108,118-136,144-174,440-512 \mathrm{MHz}$ This scanner offers Public service bands, plus Aircraft and FM broadcast stations. You can listen to Bach or a Boeing 747, the Rolling Stones or the riot squad, or any of 50 channels. Plus special direct access keys let you listen to police, fire, emergency, or any of your favorite channels just by pushing a button.

Regency ${ }^{\text {® }}$ R1040
 List price \$199.95/CE price \$129.00

©-Band, 10 Channel - Crystalless - AC only Frequency range: $30-50,144-174,440-512 \mathrm{MHz}$. Now you can enjoy computerized scanner versatility at a price that's less than some crystal units. The Regency R1040 lets you in on all the action of police, fire, weather, and emergency calls. You'll even hear mobile telephones.
Programming the R1040 is easy. Merely touch the keyboard and enter any of over 15,000 frequencies on your choice of 10 channels.

TEST ANY SCANNER

Test any scanner purchased from Communications Electronics" for 31 days before you decide to keep it. If for any reason you are not completely satisfied, return it in
original condition with all parts in 31 days, for a prompt original condition with all parts in 31 days, for a prompt
refund (less shipping/handling charges and rebate credits). refund (less shipping/handling charges and rebate credits).

Regency
HX650

OTHER RADIOS \& ACCESSORIES Regency ${ }^{6}$ C403 Scanner........................ $\$ 59.00$
NEWI Panasonic RF-B50 Shortwave receiver.... $\$ 129.00$
Panasonic RF:9 Shortwave receiver $\$ 84.00$
Panasonic RF-799 Shortwave receiver Panasonic RF-2600 Shortwave recelver Panasonic RF-2900 Shortwave recelver. Panasonic RF-3100 Shortwave reciever. Panasonic RF-6300 Shortwave reciever. NEWI Bearcat +151 Scanner. . NEWI Bearcat ${ }^{\circ}$ Five-SIx Scanner Bearcat 300 Scanner Bearcat ${ }^{\circ} 200$ Scanner
Bearcat ${ }^{\circ} 210$ XL Scanner
Bearcat ${ }^{\circ}$ 20/20 Scanner.
Bearcat 100 Scanner.
Bearcat ${ }^{\circ}$ Weather Alert.
Freedom Phone ${ }^{\circ} 4000$ Cordless telephone
Fanon FCT-200 Cordless telephone
Fanon 6-HLU Scanner
CHB-6 Fanon AC Adapter/Battery Charger CAT-6 Fanon carrying case with belt clip SP55 Carrying case for Bearcat Five-Six. SCMA-6 Fanon Moble Charger/Audio Amplifie AUC-3 Fanon auto lighter adapter/Battery Charge FB-E Frequency Directory for Eastern U.S.A. FB-W Frequency Directory for Western U.S.A TSG"Top Secret" Registry of U.S. Government Freq RRF Railroad Frequency Directory. .
ESD Energy Services Directory.
ASD Frequency Directory for Aircraft Band SRF Survival Radio Frequency Directory TIC Techniques for Intercepting Comm. Manual CiE Covert Intelligence, Elect. Eavesdropping Man B-6 1.2 V AA Ni-Cad batteries (set of four A-135c Crystal certificateries (set of four) Add 135 C Crystal certificate...................................... Add $\$ 12.00$ per for all accessonies ordered at the same time. INCREASED PERFORMANCE ANTE shipping.
If you want the PERFORMANCE ANTENNAS If you want the utmost in performance from your scanner, it is essential that you use an external antenna. We have a base and a mobile antenna specifically designed for receiving all bands. Order \#A60 is a magnet mount mobile antenna and order \#A70 is an all band base station antenna. Price is $\$ 35.00$ each plus $\$ 3.00$ for UPS shipping in the continental United States.

BUY WITH CONFIDENCE
To get the fastest delivery from CE of any scanner, send or phone your order directly to our Scanner Distribution Center." Be sure to calculate your price using the CE prices in this ad. Michigan residents please add 4% sales tax or supply your tax I.D. number. Written purchase orders are accepted from approved government agencies and most well rated firms at a 30\% surcharge for net 30 billing. All sales are subject to availability, acceptance and verification. All sales on accessories are final. Prices, terms and specifications are subject to change without notice. All prices are in U.S. dollars. Out of stock items will be placed on backorder automatically unless CE is instructed diforder automatically uniess CE is instructed dif-
ferently. Minimum prepaid order $\$ 35.00$. Minimum purchase order $\$ 200.00$. Most products that we sell have a manufacturer's warranty. Free copies of warranties on these products are available prior to purchase by writing to CE. International orders are invited with a $\$ 20.00$ surcharge for special handling in addition to shipping charges. All shipments are F.O.B. Ann Arbor, Michigan. No COD's please. Noncertified and foreign checks require bank clearance.

Mail orders to: Communications Electronics," Box 1002, Ann Arbor, Michigan 48106 U.S.A. Add \$7.00 per scanner for U.P.S. ground shipping and handling in the continental U.S.A. If you have a Visa or Master Card, you may call and place a credit card order. Order toll-free in the U.S. Dial 800-521-4414. In Canada, order tollfree by calling 800-265-4828. Telex anytime 810-223-2422. If you are outside the U.S. or in Michigan dial 313-973-8888. Order today.
Scanner Distribution Center ${ }^{*}$ and CE logos are trademarks of Communications Electronics.:
\dagger Bearcat is a federally registered trademark of Electra Company, a Division of Masco Corporation of Indiana. \ddagger Regency is a federally registered trademark of Regency Electronics Inc.

AD \#092683
Copyright ${ }^{\circ} 1983$ Communications Electronics OrderToll Free...call 1-800-521-4414

COMMUNICATIONS ELECTRONICS"

Consumer Products Division

818 Phoenix Box $1002 \square$ Ann Arbor, Michigan 48106 U.S.A Call toll-free 800-521-4414 or outside U.S. A. 313-973-8888

THE MAGAZINE FOR NEW IDEAS IN ELECTRONICS

ON THE COVER

As you are probably aware, stereo broadcasts are now legal on the AM band. Because of the FCC's "let-the-market-decide" approach, there are now four systems in competition. One that is very promising is Motorola's C-QUAM (Compatible Quadrature Amplitude Modulation) system. We'll take a look at Motorola's MC13020 decoder IC and build a stereo converter for your radio. The story begins on page 41.

The telephone shown above is the one that the now-famous words "Mr. Watson, come here, want you" were spoken in 1876 . Our look back at the telephone begins on page 47.

COMING NEXT MONTH On Sale January 19

- Cable-TV descrambling
- Digital voltmeter modules And lots more! Radio-Electronics, (ISSN 0033-7862) Published monthly by Gernsback Publications, Inc., 200 Park Avenue South, New York, NY 10003. Second-Class Postage Paid at New
York, N.Y. and additional mailing offices. One-year subscripfion rate: U.S.A. and U.S. possessions, $\$ 14.97$, Canada, $\$ 17.97$. Other countries, $\$ 22.47$ (cash orders only, payable in U.S.A. currency). Single copies $\$ 1.75$. © 1983 by Gernsback Publications, Inc. All rights reserved. Printed in U.S.A.

Subscription Service: Mail all subscription orders changes, correspondence and Postmaster Notices of un delivered copies (Form 3579) to Radio-Electronics Subscription Service, Box 2520 , Boulder, CO 80322.
A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs if the eturn is desired should they be rejected. We disclaim any artwork or photographs while in our possession or othenw

DAVID LACHENBRUCH
CONTRIBUTING EDITOR

8-mm VIDEO

While Japanese manufacturers seemingly have sent the concept of $8-\mathrm{mm}$ Video back to the drawing board (Radio-Electronics, December 1983), Europe's biggest consumer electronics manufacturer, Philips, has demonstrated a prototype and says its version will be on the market in Europe in the fall, in a combination camera-recorder unit that will sell for $\$ 1,500-\$ 1,600$, including all taxes. The camcorder, a PAL-SECAM unit, uses metal-evaporated tape in a cassette just about the size of an audio cassette. The camera-head is detachable from the recorder, with each unit weighing about 2.4 lb ., and the battery, which can operate one hour per charge, weighs about $3 / 4 \mathrm{lb}$., giving the system a total weight of 5.5 lb . That system weight is actually almost a pound heavier than the upcoming Video Movie camcorder, which uses a VHS-C 20 -minute cassette.

Philips' cassette initially will be available in 30 - and 60 -minute versions, but the company says that future cassettes should have the capability to store at least three hours of video. The 8 -mm camcorder has an electronic viewfinder, 6:1 power zoom, on-screen date insert, LCD tape counter, and fade and pause/still controls. The soundtrack is hi-fi FM, helically scanned mono, but future models are expected to have PCM digital stereo. The pickup is a $3 / 4$-inch Newvicon, eventually to be replaced with a CCD image sensor. In separate packages are a combination AC power supply with RF modulator and battery charger, and a tuner-timer.

Japanese manufacturers have lost much of their original enthusiasm for the 8 -mm Video standard-probably because sales of the current half-inch VCR's are so much better than they anticipated. As a result, they're looking with considerable favor upon a French proposal to reengineer the standard using a baseband recording technique that would make possible recordings that could be played back in PAL, SECAM, or NTSC.

The emphasis in 1984-model color-TV sets is on the "modified component" approach-tacit admission by many manufacturers that they guessed wrong last year by taking tuners (and sometimes loudspeakers) out of the sets and charging premium prices. There has been virtually no increase in the number of "true component" models offered; the trend now is definitely toward the monitor-receiver, which can be used as a stand-alone TV set or as the basic component in a home-video system. In other words, the approach is the one chosen by RCA as opposed to that selected by Zenith last year. Even such an esoteric brand as Proton is adding self-contained systems to its component lines.

The number of monitor-receivers - probably best defined as color sets with multi-inputs and at least one set of outputs - is growing by leaps and bounds; set sizes range from 4.6 to 25 inches. The trend for 1984 is to increase the number of input jacks, and to locate at least one pair at the front of the set, so devices may be connected temporarily without pulling the receiver out of a wall rack or cabinet. RGB jacks are finally becoming popular and are being added to models that didn't sport them last year - including those by Mitsubishi, NEC, Panasonic, Proton, Sanyo, Sony, and Zenith. Along with RGB inputs, more brands are offering higher-resolution pictures for computer monitoring.

The new sensation of the video arcade could spread to the home-at least videodisc-player manufacturers hope so. The first coin-operated videodisc arcade game to be widely dis-tributed-Dragon's Lair by Cinematronics-has been an overnight success. The next is likely to be Astron Belt by Sega Entertainment.

Dragon's Lair uses animated footage and Astron Belt "live" material to add new realism and action to coin games. They both use microprocessor-equipped industrial optical videodisc players made by Pioneer, which at press time was having difficulty keeping up with orders. Cinematronics thinks there's a market for 20,000 to 30,000 Dragon's Lair games, but must be content to ship 200 to 400 daily (about half the number ordered) because of the shortage of disc players.

All of that is being watched closely by videogame, home computer, and videodisc manufacturers. Based on past experience in the videogame business that arcades spark demand for home products, the industry is working away furiously on game systems for the home that use videodiscs. And videodisc-player manufacturers, whose products have been selling none too briskly, are joining in the effort-with fingers crossed.

R-E

Now 60 MHz or 100 MHz Tek quality is just a free phone call away!

Tek has expanded its best-selling 2200 scope line up to 100 MHz . And brought it all as close as your phone. Tek's revolutionary, reduced-component architecture brings unprecedented quality, reliability and affordability to the 60 MHz 2213 and 2215 , and now, the 100 MHz 2235.
All three of these lightweight (13.5 lb .) scopes feature $2 \mathrm{mV} /$ div vertical sensitivity and $5 \mathrm{~ns} /$ div sweep speeds, plus a complete trigger system for stable triggering on digital, analog or video waveforms.
Scopes with a comprehensive 3-year warranty*... probes... and expert advice. One free call gets it all! You can order, or obtain literature, through the Tek National

	$\mathbf{2 2 1 3}$	$\mathbf{2 2 1 5}$	$\mathbf{2 2 3 5}$
Bandwidth	60 MHz	60 MHz	100 MHz
No. of Channels	2	2	$2+$ Trigger View
Alternate Sweep	-	Yes	Yes
Vert/Trig B/W Limit	-	-	Yes-20 MHz
Single Sweep	-	-	Yes
Accuracy: Vert/Horz	3%	3%	2%
Delay Jitter	$1: 5,000$	$1: 10,000$	$1: 20,000$
Trigger'g Sensitivity	0.4 div at 2 MHz	0.4 div at 2 MHz	0.3 div at 10 MHz
Input R-C	$1 \mathrm{M} \Omega-30 \mathrm{pf}$	$1 \mathrm{M} \Omega-30 \mathrm{pf}$	$1 \mathrm{M} \Omega-20 \mathrm{pf}$
Variable Holdoff	$4: 1$	$4: 1$	$10: 1$
Price	$\$ 1200 \dagger$	$\$ 1450 \dagger$	$\$ 1950 \dagger$ Now $\$ 1650 \dagger$

Marketing Center. Technical personnel, expert in scope applications, will answer your questions and expedite delivery. Direct orders include operating and service manuals, two 10X probes, 15-day return policy, and worldwide service back-up.

Order toll free:

1-800-426-2200, Extension 108.
In Oregon call collect: (503) 627-9000, Ext. 108.
\dagger Price FO.B. Beaverton, OR.
3-year warranty includes CRT and applies to 2000 family oscilloscopes purchased after $1 / 1 / 83$. Scopes are UL Listed, CSA and VDE approved.

Flicker-free 3-D movies

 with new stereo systemVarious "3-D" optical systems used in videogames, movies, etc., have shown weaknesses. Those using red-green eyeglasses limit the color spectrum and often cause eyestrain. Polarizing systems render color better but produce ghosting if the viewer's head is not kept rigidly vertical.
In a new system, originated by Stereographics Corp. of San Rafael, CA, glasses are used in which the left and right lenses are triggered alternately on and off in sync with the program source (video games, computer software, videotape, stereoscopic microscope, or video camera).

The stereoscopic program source is connected to a "black box", which decodes the image for each eye and keeps it in sync with the electro-optical shuttering glasses.
In earlier versions of the system, the glasses are connected to the black box by wire. In later systems, infrared rays or ultrasonic waves have been used experimentally.

New Tektronix shutter makes color from black and white

Tektronix announces that it plans to sell its new Liquid Crystal Color Shutter (LCCS) first demonstrated in May, 1983, on a contract basis to customers outside the company. The decision is based on a feeling that the cost-effective application of that color technology extends beyond the company's product lines.
With the new shutter, a monochrome display tube is used, preferably one whose output peaks in the red and green portions of the spectrum. It is activated in fieldsequential manner, which is reminiscent of the old CBS color-television proposal.
The color shutter consists basically of a sandwich of special polarizers and Tektronix's proprietary liquid-crystal pi-cell, which acts as a switchable, red-green birefringent filter that switches between two states, the first allowing red to pass and then green. The alternate fields, viewed through the different colored polarizing filters, are integrated by the viewer's eye
to produce color images. The full range of colors between red and green can be achieved through the varying intensity of the two primary colors-or in lower-cost instruments a simple three-color display (red, green, yellow) can be used.

Earlier attempts to produce a field-sequential system have not been entirely satisfactory, largely due to the long switching time of the cells available. The new Textronix cell has a switching time between 2 and 5 milliseconds, as compared to tens of milliseconds in older types.

Cellular mobile radio
 approved in Pittsburgh

The first cellular mobile franchise was granted through a comparative hearing process to MCl Communications Corp. A construction permit for a system in Pittsburgh was awarded the company by an FCC judge, and MCI stated that it would begin operation as soon as it received authorization from the Pittsburgh Public Utilities Commission. "We should be operational by early 1984 ," said an MCl spokesman.

Cellular radio (Radio-Electronics, p. 41, Feb. 1982 and p. 6, July 1983) is a technology that permits "virtually unlimited" mobile and portable telephone service in an area. The FCC will allow two competitors in each market designated for cellular service.
MCl estimated that its construction costs will run over $\$ 7$ million, and expects first year revenues to be nearly $\$ 1$ million.

New electronic mail is faster and cheaper

MCI has introduced an electronic mail system that it claims is faster and can be as much as 90 percent cheaper than comparable time-sensitive mail services. The new service provides a variety of speeds and delivery systems, from "Instant," delivered electronically in seconds, to next-day delivery by local regular mail.
MCI Mail can be used with almost any personal computer, word processor, electronic typewriter, data terminal, Telex, or other digital communications device. The messages can be printed on laserprinted replicas of the customer's letterhead and signed with pre-reg-
istered, laser-printed signatures.
If the recipient has no terminal, the mail is routed via MCl's network to the MCI postal center nearest the recipient for laser printing and mail delivery.
There are four delivery and rate options:

Instant-from terminal to terminal via MCI's electronic mailbox, at a cost of about \$1.00.
Four-hour-hard-copy delivery by courier anywhere within the metropolitan areas of 15 major cities. Cost for that service is about $\$ 25.00$.

Overnight-(by noon). Delivery by courier in 20,000 continental U.S. cities. Cost, about $\$ 6.00$.

MCI letter-Transmitted electronically to the nearest MCl postal center, then delivered via local mail service. Cost, about $\$ 2.00$.

512-kilobit memory IC developed by IBM

An experimental version of a new computer-memory IC with a capacity of 512 Kilobits was announced by IBM this past October. The new IC is said to be the biggest single product in the history of microelectronics.
The new IC, if found to be adaptable to mass production, will be most useful in large-scale systems like IBM's 308 X line, which are capable of executing up to 23 million instructions a second.

A new "square look"
 for RCA picture tubes

RCA announces that it is developing several new sizes of color-picture tubes that will provide squarer screens and a "new look" for future TV receivers. The new tubes will come out in 26 -inch, $20-$ inch, 16 -inch, and 14 -inch, (diagonal) picture sizes.

Existing picture tubes-in 13,15 , 19, and 25 -inch sizes-are so designed as to curve inward at the sides and round off the corners of the viewing screen. That reduces the sharpness in the corners of the picture. The new "full square" tube provides a more pleasing rectangular picture, with greater picture area to enhance television viewing.

The new tubes will be available for sale to TV receiver manufacturers beginning in 1984. R-E

Hugo Gernsback (1884-1967) founder
M. Harvey Gernsback, editor-in-chief

Larry Steckler, CET, publisher
Arthur Kleiman, editor
Carl Laron, WB2SLR, associate editor
Brian C. Fenton, assistant technical editor
Robert A. Young, assistant editor
Jack Darr, CET, service editor
Robert F. Scott, semiconductor editor

Herb Friedman, communications editor
Gary H. Arlen, contributing editor
David Lachenbruch, contributing editor
Earl ""Doc" Savage, K4SDS, hobby editor
Danny Goodman, contributing editor
Ruby M. Yee, production manager
Robert A. W. Lowndes, production associate
Dianne Osias, production assistant
Joan Roman, circulation director
Arline R. Fishman,
advertising coordinator
Cover photo by Robert Lewis
Radio-Electronics is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Literature.

Gernsback Publications, Inc.
200 Park Ave. South
New York, NY 10003
President: M. Harvey Gernsback
Vice President; Larry Steckler
ADVERTISING SALES 212-777-6400
Larry Steckler
Publisher

EAST/SOUTHEAST

Stanley Levitan
Radio-Electronics
200 Park Ave. South
New York, NY 10003
212-777-6400

MIDWEST/Texas/Arkansas/Okla.

Ralph Bergen
Radio-Electronics
540 Frontage Road-Suite 325
Northfield, Illinois 60093
312-446-1444

PAOIFIC COAST

Mountain States
Marvin Green
Radio-Electronics
15335 Morrison St., Suite 227,
Sherman Oaks, CA 91403
818-986-2001

The Digital vs. Analog battle is over.

\$ 85^{*} buys you the new champion. - The new Fluke 70 Series.

They combine digital and analog displays for an unbeatable two-punch combination.

Now, digital users get the extra resolution of a 3200 -count LCD display.

While analog users get an analog bar graph for quick visual checks of continuity, peaking, nulling and trends.

Plus unparalleled operating ease, instant autoranging, 2,000+ hour battery life and a 3 -year warranty.

All in one meter.
Choose from three new models. The Fluke 73 , the ultimate in simplicity. The feature-packed Fluke 75 . Or the deluxe Fluke 77 , with its own multipurpose protective holster and unique "Touch Hold" function (patent pending) that captures and holds readings, then beeps to alert you.

Each is Fluke-tough to take a beating.
American-made, to boot. And priced to be, quite simply, a knockout.

For your nearest distributor or a free brochure, call toll-free anytime 1-800-227-3800,
Ext. 229. From outide U. US. call 1-402-496-1350, Ext. 229.
FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

Fluke 73

Filuk 73
Analog/digital display Volts, ohms, 10A, diode lest Autorange 0.7% basic dc accuracy 2000+ hour battery lile 3-year warranty

Fluke 75

[^0]
SATELLITE/TELETEXT NEWS

GARY ARLEN
CONTRIBUTING EDITOR OFFER SERVICES

"Transtext"-a hybrid telephone-cable TV package offering home banking, shopping, information retrieval, energy management, security and other two-way services through a "gray box"-will be tested early next year. More than a dozen major companies, including Southern Bell Telephone, Georgia Power, a data-management company, cable-TV operators, and a home-computer retailer, are taking part in the experiment, which is being set up in a suburban Atlanta community.

The Transtext system includes delivery of video still-frames on demand when a customer pushes buttons on his telephone keypad; images are delivered via the cable-TV hook-up into a standard TV set. Conventional teletext information plus other sophisticated interactive services will be part of the package being tested, with an eye toward future national service possibly by next year (1985). Energy companies are interested in Transtext because the system can handle meter reading plus peak-load management.
Transtext is said to include a "breakthrough" facility that allows users to capture and manipulate video material that is fed through a one-way cable channel for downstream delivery; a telephone-line hookup is used for upstream transmission. At the technological heart of the system is a "superswitch gateway," which is an upgraded version of the Local Area Data Transport (LADT) packet-switched network being used for the south Florida Viewtron service. The companies setting up Transtext characterize it as an enhancement of current videotex/teletext projects offered in a lower-priced package.

TELETEXTCAPABLE SETS

Matsushita, unveiling its first line of digital TV sets, which will be sold in the U.S. under the Panasonic label by late 1984, has put an unusual emphasis on the equipment's capacity to display videotex/teletext signals. One of the new Panasonic units is a collapsible, portable unit being promoted as a display terminal for videotex and other video-information services. Pricing and distribution plans have not been completed.

The 6.6 -pound portable unit has a 6.3 -inch projection-TV display screen. The digital technology will presumably deliver a sharper image when the unit is hooked into a videotex or teletext circuit.

Sony has also published a product-availability list for its line of videotex and teletext equipment to be sold in the U.S. during the coming year. The basic Prestel videotex terminal costs $\$ 912$, with optional additions of a $\$ 280$ full keyboard (as opposed to the small keypad that comes with the basic terminal) and a $\$ 560$ black-and-white printer. Sony's NAPLPS videotex decoder will cost $\$ 975$; the NABTS teletext decoder costs $\$ 950$. There are no prices yet for the optional items that Sony plans to add to its NAPLPS format videotex items, such as a remote commander, optional keypad, and full keyboard. Prices are expected to drop dramatically after the first round of equipment is introduced.

SUPERSTATION SATELLITE

The European Broadcasting Union plans to launch a multinational satellite superstation during 1984 that will become a commercial TV programming service with up to five hours a night of programming. The European superstation will be beamed from Holland's transponder on the European Communications Satellite. The Pan-European Broadcast Satellite will include programming from England, West Germany, Sweden, Italy, Holland, Ireland, and Switzerland. EBU expects that the satellite broadcasting project may help European viewers bypass the cable TV systems that are now being built or planned in many European coun-tries-an issue that is sure to raise political problems. Plans also call for commercials on the satellite service, a fairly unusual situation in Europe, where commercials are rare on the government owned broadcast TV channels.

The 100MHz scope that won the largest scope contract ever awarded...

For sales and technical information: call toll free 800-421-5334 (in Calif., Alaska, Hawaii 213-515-6432)

Kikusui International Corp.
17819 Figueroa Street, Gardena, Calif. 90248 TWX 910-346-7648
In Canada call: Interfax Systems, Inc. 514-336-0392 Subsidiary of Kikusui Electronics Corp., 3-1175 Shinmaruko-Higashi, Nakaharu-Ku, Kawasaki City, Japan (044)-411-0111 (C) Kikusui International 1983

Address your comments to: Letters, Radio-Electronics, 200 Park Avenue South, New York, NY 10003

VOLTAGE-REGULATOR CIRCUIT

I would like to comment on the high-current voltage-regulator circuit that Robert Grossblatt presented in the "Drawing Board" department, for July 1983. Although Mr. Grossblatt's circuit certainly works, it suffers from two drawbacks: First, it uses two expensive PNP power transistors, and, second, it is more complex than it needs to be.
National Semiconductor's Voltage Regulator Handbook suggests the following circuit (Fig. 1).

FIG. 1

FIG. 2
This circuit uses the regulator's internal short-circuit protection to protect the transistor as well. The current through Q1 is R2/R1 times the regulator current, so the short-circuit current through Q1 is R2/R1 times the regulator's short-circuit current. Assuming appropriate heat-sinking, the regulator's thermal protection will also be extended to Q1.
For typical applications, National recommends the following components; Q1$2 N 4398, D 1-\operatorname{NH719}, \mathrm{R} 2 / \mathrm{R} 1 \geq 3, \mathrm{R} 3-5$ to 10 ohms.
Instead of using the expensive PNP power transistor, a small PNP transistor and an NPN power transistor can be combined as shown in Fig. 2.
LAWRENCE J. JONES
Cincinnati, OH
The short-circuit protection in the, 7805 was designed to handle the current capabilities of the 7805. Aside from dunking it in liquid nitrogen, you must have external protection if you use a pass transistor to increase the current. The circuit you sent will dump all the shortcircuit current through the chip's internal pro-
tection and, believe me, you'll fry the chip. absolutely. You must provide another path for the excess current, as I did with Q2. The capacitors I indicate are needed for obvious reasons, and I can only assume that you left them out to make the drawing simpler. The same goes for the diode, D1, I used to protect against an input short.

As far as expense goes, the transistors needed only have to handle the current generated by the circuit that I developed, and you can get them for under \$1.00-about the same cost as the transistor you showed in your drawing. In any event, expense is a minor factor if the circuit cashes in the first time you have a short circuit. Rememberalways design for worst case operation, because Murphy's Law shows clearly that pessimism can save you a lot of time and money. ROBERT GROSSBLATT

THE KAYPRO II

I was very interested in reading your review of the Kaypro II portable computer in the April 1983 Radio-Electronics. Having just sold my Osborne so that I might get the Kaypro•II, I expected the review to confirm my good judgment. Instead, I was amazed at the very superficial coverage of a most excellent product.

The price stated for the Kaypro double density, $\$ 1795$, is correct; but the price for the double-density Osborne is $\$ 1995$. In addition, you must add $\$ 250$ for the 80 -line conversion, plus about $\$ 150$ for a monitor big enough to see, plus $\$ 40$ for a connector-bringing the total to $\$ 2185$, or about $\$ 400$ more for a somewhat similar product.

Software includes, as stated, Perfect Writer, Speller, Calc, and Filer; Profit Plan, an extremely flexible calculating spreadsheet and table maker; S-BASIC, a translator of a BASIC programs into machine language, so that they can run many times faster, and CP M. Not advertised, but also included with the CP/M, are DDT, a well-known program debugger, and XAMN, a progam to examine a faulty disk and salvage it and the program. Also included are Microsoft's BASIC-80 and The Word Plus. Wayne Holder's The WORD Plus is fantastic; it has a 45,000-word dictionary, and a small-file specialty dictionary. It also has a word count, hyphen helper, a "incontext" one line viewer, plus FIND (h?t?o?s $=$ hotdogs) and Anagrams. One of the advantages of the four Perfect programs is that they have a common keyboard language. You don't have to relearn for each program, and they can also co-mingle in the same edited product. Also included are about a dozen choice games that my kids enjoy and, I must confess, have been known to entrap me, too.
Your reviewer's comment that the Kaypro II
"falls down on screen usability" would be good for a laugh if he were not serious. After using that "scrolling postage stamp" on the Osborne, he has to be kidding! As for the "green on green", has he never heard of a blanking-level adjustment? Every CRT has one; some use it for a brightness control (cheap design). Kaypro has a true video-leve adjustment, and the blanking level is an internal pot. Maybe that is why he sometimes sees noise. It will take his service man about three minutes to adjust. His "soft-touch" keyboard complaint just is not valid. He just plain hasn't gotten used to things other than his 1936 Underwood. The Keytronics keyboard is used on some of the most expensive units around. And what's that "outer glass defeats the matte finish on the inner surface" that he talks about? All CRT's have bonded safety glass; there is no "inner-outer glass". RF noise? A high-resolution system means fast risetimes, infinitely rich in odd harmonics. And that CRT screen is a big window for them to get out of. I've designed high-rise monitors for the military ... shielding is a very tough problem. Who wants mesh screens over the face of the CRT?

Getting down to the nitty-gritty of what a computer is all about, why couldn't the reviewer point out the split-screen capability? The screens can scroll independently, and in the spreadsheet mode they can also scroll horizontally, either locked or separate. Why not tell about the seven-buffer capacity that keeps different files at your fingertips, doing its own auto-swapping to the disk to keep up with your usage? It makes any multiple-file work easy, and I can't name another computer that has it. Why not tell how easy it is to move the cursor, by letter, word, line, sentence, paragraph, screen, or file? Why not describe how easy it is to delete? I'm at a loss to think of anything that it can't do.

The computer is easy to use. The keyboard will sit in your lap. It has a telephone-type coiled cord ... not a cable off some power tool. How about not having your desk cluttered with wires of all types? The connectors are at the back, out of the way, where they belong.

Mr . Osborne really started something. But now the competition will be hard to catch. The Kaypro II is a great machine, with great software, at a great price. Let's hear it like it really is!
HARVEY DEGERING
Pasadena, CA

HORIZONTAL/VERTICAL OSCILLATORS

I have read most of your June 1983 issue with interest. However, I believe that Jack Darr has a problem on page 98 ("Service Clinic") wherein he says: "Since the horizontal-sync

Learn Computing with the Micro-Professor-IP for $\mathbf{\$ 1 9 9}$

The Micro-Professor (MPF-IP) is a complete hardware and software system that will expose you to the amazing world of microprocessors.
A comprehensive teaching manual gives you detailed schematics and extensive examples of program code. All of this makes for a superb learning tool for students, hobbyists and microprocessor enthusiasts alike. Also serves as an excellent teaching aid for instructors of electrical engineering and computer science.

With the Micro-Professor-IP you get:

- Z-80 processor chip
- High quality 49-key keyboard
- On board 4 K-byte RAM
- On board 8 K-byte ROM including:
- Interactive Monitor
- Line Assembler
- Two Pass Assembler
- Tekt Editor
- Disassembler
- Language options of BASIC and FORTH.

You'll also get a lot more including: - Built-in speaker

- 20 digit alphanumerical green tube display.
-48 Input/Output lines
- Battery back-up circuits for RAM
- Bus expandable Z-80* architecture
- Three user's manuals
- Program storage/reading cassette interface

Options

- Student Workbook (\$15)
- Printer (\$99)
- Speech Synthesizer Board (\$129)
- Sound Generation Board (\$99)
- EPROM Programming Board (\$169)
- Input/Output and Memory Board (\$99)

MPF-I Micro-Professor

Z-80* CPU, 2 K RAM expandable to 4 K , 2 K RAM, sophisticated monitor expandable $8 \mathrm{~K}, 6$-digit LED display plus a built-in speaker, cassette interface. and sockets to accept optional

CTC/PIO, BUS is extendable. As well as being an exciting learning tool, the MPF-I is a great lowcost board for OEM's.

All|l
MULTITECH ELECTRONICS INC.
195 WEST EL CAMINO REAL SUNNYVALE, CA
94087 U.S.A. TEL: 408.7738400
TLX: 176004 MAC SUVL FAX: 408.7498032

- Z .80 is a trademark of Zilog Inc.

Distributor list
 U.S.A

Learning Labs, INC.
P.O. Box 122

Calhoun, GA 30701
TEL: 404-629-1521

Technical Laboratory

Systems, INC.

P.O. Box 218609

Houston, TX77218
TEL: 713-465-9793

SIVAD INC
P.O. Box 16664,

Jackson, MS39206
TEL: 601-355-3110
L.A.B. Corporation

4416 River Road
Afton, MN 55001
TEL: 612-436-1169

Etronics

3928 148th N.E.
Redmond WA 98052
206-881-0857

DIGIAC CORP.

175 Engineers Road,
Smithtown, N.Y. 11787
TEL: (516) 273-8600

Canada

Future Electronics INC.

Montreal

237 Hymus Boulevard Pointe Claire, Quebec H9R 5C7
TEL: (514) 694-7710

OTTAWA

Boxter Centre 1050 Boxter Road, Ottawa, Ontario K2C 3P2

TORONTO

4800 Dufferin Street Downsview, Ontario M3H 5S8

CALGARY

5809 Macleod Trail
South Unit 109 Calgary,
Alberta T2H 0J9

Vancouver

3070 Kingsway
Vancouver, B.C. V5R 5J7
Outside of North America mail to:
Multitech Industrial Corporation
977 Min Shen E. Road,
105 Taipei, Taiwan, R.O.C.
Tel: 02-769-1225 Tlx: 19162 MULTIIC
23756 MULTIIC
frequency is a multiple of the vertical-sync frequency

The ratio of 15,750 to 60 is 262.5 , of course, and cannot be considered compatible with counting. When I first derived a raster in the late 40 's, I started with a 31,500 -cycle oscillator.
Next he says that the system uses no oscillators. Without them, in the absence of signals, the sweeps would collapse and there would be no high or boost voltages. That would not be conducive to well-being, methinks.

Perhaps the IC is doing something that it is not telling him. For example, phase-locked loops are built using the oscillator, phase comparator, and counters for multiple outputs. And, of course, they will lock a 31,500 oscillator to a 15,750 sync pulse
Incidentally, I am not acquainted with the circuits to which he alluded.
I like your magazine, also Jack Darr's items.
L.D. SMITHEY,

Pacific Palisades, CA
Dear Mr. Smithley:
Thank you for your letter. I'll give you one: I did say "No horizontal/vertical oscillators." There aren't any discrete oscillators as we used to have, but there would have to be some kind of "keep alive" circuit in there to make a raster with no signal. I should have made that plainer.

The horizontal frequency is a multiple of the vertical-sync frequency. In fact, in a color set, everything is a multiple of the horizontal frequency! Even the " 3.58 " MHz color oscillator, which isn't 3.58 , but is rounded off from
3.574595 MHz . That odd frequency was chosen to allow "frequency interleaving" in the composite TV signal; the horizontal frequency isn't 15,750 any more but something like 15,749 or so (I can never remember it!) Vertical frequency is now 59.94 Hz -not even a nice $60 . \mathrm{Hz}$. Same reason. So, the countdown IC's can divide or multiply those oddballs and come up with the proper frequencies for the sweep. I know that it does work, and the tests mentioned in the article are valid.
Thanks for catching the error about no oscillators. One other reader has already mentioned that, and there'll be more. Keep those cards and letters coming, folks.
Hope that helps a bit, and good luck. JACK DARR

PORTABLE CASSETTE RECORDERS

Some months ago (September 1982), you ran an article on servicing small, portable cassette recorders. As a service technician, I read and enjoyed the article, but there were two important parts missing. For the benefit of other service technicians who repair those little horrors, here they are:

First, you have a recorder which plays back perfectly, but will not record at all, or records weakly and distortedly. If everything else checks out OK, change the head; that usually cures the complaint. Use a scope to check the signal on the head terminals.

Some of the cheaper recorders use DC for recording bias, as well as for erasing. Those are easy to troubleshoot-the scope clearly shows the presence or absence of signal at
the head terminals. However, many record-ers-even some real cheapies-use AC HF bias on the record head, and those are more difficult to troubleshoot with a scope. That's because the audio signal appears as amplitude modulation on the HF bias, and not with any great amplitude either-but it can be clearly seen as a ripple on top and bottom of the steady-state HF bias.
That is sufficient to modulate the tape, and if seen on a recorder that refuses to record, change the head. That cures 95% of such complaints.
Another fault not mentioned in the article is when a recorder winds the tape around the drive spindle or simply spews tape out. In nearly every case, that is due to the take-up spool either turning the wrong way or not turning at all.
When the spool is turning the wrong way, that is always due to the drive belt, replaced by the customer (and some service shops, too), passing on the wrong side of the pulley, which, in turn, drives the take-up spool. Before putting a tape into the recorder, check to be sure that the take-up spindle turns coun-ter-clockwise. It is a very easy mistake to make if a recorder comes in with a broken or missing drive belt.

Finally, here is another hint: The long changeover switch, which operates on "record", is a source of trouble as well. If you have a recorder that is unstable (and even expensive machines are prone to that trouble), just try a good dose of contact cleaner to the switch. In probably 75% of cases, that will solve the problem.
D.J. BRUYNS

Rep. of South Africa
R-E

KIHIII

 VIZ ต่อ̈
© PHILIPS
TRIPLETT

BK parcision
Simpson

(6) HITACHI

HI-PERFORMANCE
PORTABLE
OSCILLOSCOPES

ALL FEATURE 6" RECTANGULAR CRT

ALL HITACHI OSCILLOSCOPES FEATURE 2-YEAR PARTS \& LABOR WARRANTY

V-422
$D C$ to $40 \mathrm{MHz}, 1 \mathrm{mV} / \mathrm{div}$, dual-trace, DC offset function

V-222
DC to $20 \mathrm{MHz}, 1 \mathrm{mV} /$ div, dual-trace, DC off. func., Alt. magnify function

V-212
DC to $20 \mathrm{MHz}, 1 \mathrm{mV} /$ div, dual-trace

- 32 M M $\cdot 10$ Amps • Diode Test
- 3200 Counts • Fast Autoranging - Function Annunciators in Display
- Power-Up Self Test • 2000+ Hour Battery Life w/ Power Down "Sleep Mode" • New Test Leads • VDE \& ULApproval

MODEL 73	$\$ 8500$
MODEL 75	$\$ 9900$
MODEL 77	$\$ 12900$

BECKMAN'S CIRCUITMATE ALL UNDER $\$ 100$.

DM20 $31 / 2$-digit
pocket-size; 0.8\%
voc accuracy \$ \& 95
DM40 $31 / 2$ digit,
Vdc 0.8\% accuracy,
diode test
hFE test
${ }^{\$} 69^{95}$
DM45 $31 / 2$ digit,
$\begin{aligned} & 0.5 \mathrm{Vdc} \text { accuracy, } \\ & \text { continuity beeper }\end{aligned}$

EQUIPMENT REPORTS

Philips Model PM 6668 High-Resolution Frequency Counter

CIRCLE 101 ON FREE INFORMATION CARD

JUST BY LOOKING AT THE PM 6668, YOU might not think that there was anything special about it. It's packed in a gray plastic cabinet and its uncluttered front panel has only three controls and two input jacks. However, that frequency counter

Philips					PM 6668		
OVERALL PRICE							
$\begin{aligned} & \text { EASE } \\ & \text { OF USE } \end{aligned}$							
INSTRUCTION MANUAL							
PRICE/VALUE							
	12		314	5	6	$\begin{array}{\|l\|l} \hline 7 & 8 \\ \hline \end{array}$	920

from Philips Test and Measuring Instruments, Inc. (85 McKee Drive, Mahwah, NJ 07430) proves that looks can indeed be deceiving.

Its 8048 microprocessor is what sets it apart from the run-of-the-mill counter.

But before we talk about how the $P M$ 6668 uses the microprocessor, let's take a look at the front panel in more detail to get an idea of the counter's functions.

Controls

As we mentioned previously, there are only three front-panel controls, one of which is a pushbutton POwER switch. Next to that is another pushbutton switch labeled measurement rate. You have a choice of two rates. The first, normal, sets the measurement rate to about one measurement-per-second. The fast mode sets the rate to about five measurementsper second (one measurement every 200 ms). The fast mode can be used when measuring quickly changing frequencies.
The third control, sENSITIVITY, lets you vary the input sensitivity in 6 steps, from continued on page 20

CIRCLE 37 ON FREE INFORMATION CARD

R FREQUENCY COUNTERS to 1.3 GHZ

By OPTDelectronics inc. Ft. Lauderdale, Florida

EST. 1974

MODEL K. $\mathbf{7 0 0 0} \cdot \mathrm{AC} 10 \mathrm{~Hz}$ to 550 MHz counter. 50 Ohm \& 1 Megohm inputs via BNC type connectors on rear panel. This model is available in optional kit form.
\#K-7000-AC counter assembled 115VAC/12VDC \$150.
\#K-7000-ACK counter kit form . 120.
\#Ni-Cad-70S internal Ni-Cad battery pack. 25.
MODEL LFM:1110 Low frequency multiplier. A frequency counter accessory enabling tone frequencies to be counted faster and more accurately. Has low pass filter for off-the-air. Tone-squelch measurements. BNC input/output.
\#LFM:1110 115VAC/12VDC \$150.
MODEL 7010.S 10 Hz to 600 MHz counter. 50 Ohm \& 1 megohm inputs via BNC type connectors on rear panel. ± 1 PPM TCXO standard ± 0.1 PPM TCXO time base optional for greater accuracy. 10 mV average sensitivity. Very compact $\delta 1 / 2$ digit counter: Size $2^{\prime \prime} \mathrm{H} \times 4^{\prime \prime}$ $\mathrm{W} \times 5^{\prime \prime} \mathrm{D}, 1 \mathrm{lb}$.
\#7010-S $\quad 600 \mathrm{MHz}$ counter $115 \mathrm{~V} \mathrm{AC/12} \mathrm{~V} \mathrm{DC} \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{} \$ 235.$. \#TCXO-80 ± 0.1 PPM TCXO time base 75. \#Ni-Cad-76 Internal Ni-Cad Battery Pack 25.
MODELS 8007-S, 8010-S, 8013-S Deluxe series with frequency ranges of 10 Hz to $700 \mathrm{MHz}, 1 \mathrm{GHz}$ and 1.3 GHz . Standard features include: external clock input/output, excellent sensitivity, sealed ± 1 PPM 10 MHz TCXO time base, 4 gate times, 9 digit resolution to 175 MHz , front panel power jack for optional Broadband Preamp accessory, 115 V AC or 12 V DC operation, high quality compact construction housed in rugged aluminum cabinet. Optional features: internal Ni Cad rechargeable battery operation, precision ± 0.1 PPM TCXO or ± 0.05 PPM proportional oven (OCXO) time base. All time base oscillators, including the standard TCXO, have 10 turn calibration adjustment accessible from rear panel. Size $3^{\prime \prime} H \times 71 / 2^{\prime \prime} W \times 61 / 2 D$. $23 / 4$ lbs.

$\begin{array}{ll}\text { OPTIONS: } & \\ \text { \#TCXO-80 } & \pm 0.1 \text { PPM TCXO time base } 75 . \\ \text { \#OCXO-80 } & \pm 0.05 \text { PPM (prop. oven) OCXO time base } 125 .\end{array}$
\#OCXO-80 $\quad \pm 0.05$ PPM (prop. oven) OCXO time base 125.
\#Ni-Cad-86 Internal Ni-Cad battery pack. 60.
MODEL AP-8015-A Broadband Preamp with 25 dB nominal gain from 1 MHz to $1 \mathrm{GHz}, 10 \mathrm{~dB}$ gain at 1.3 GHz . Noise Figure less than 5.5 dB . supplied with AC adaptor or may be powered from power jack on 80XX-S series counters.
\#AP-8015-A
$\$ 195$.
\#TA-100 Antenna, RF pick-up telescope style with right angle elbow and BNC connector.
\$12.

> - FULL YEAR GUARANTEE - ALL PRODUCTS. - CERTIFIED NBS TRACEABLE CALIBRATION. - ALL ALUMINUM CABINETS.

MOST ITEMS SHIPPED FROM STOCK
Prices/Specifications subject to change without notice or obligation.

		TIME EASE		AVERAGE SENSITMIY		GAEE TIMES	MAXPESOLUTION					SENSITMTY CONTROL	$\left\lvert\, \begin{gathered} \text { ETCLOCK } \\ \text { INPU/OUTPUT } \end{gathered}\right.$	METAL CASE	$\begin{aligned} & \text { PROBE } \\ & \text { POWER } \\ & \text { JACK } \\ & \hline \end{aligned}$
MODEL	$\begin{gathered} \text { RANGE } \\ \text { (FROM } 10 \mathrm{~Hz}) \end{gathered}$	FREQ	STAB-DESIGN	$\begin{array}{\|l\|} \hline \text { BELOW } \\ 500 \mathrm{MHZ} \end{array}$	$\begin{aligned} & \text { ABOVE } \\ & 500 \mathrm{MHz} \end{aligned}$		12 M	MHz 17 MHz 100	60 MHz	175 MHz	$\begin{array}{\|c\|c\|} \hline \text { MAX } \\ \text { FREQ } \end{array}$				
K-7000-AC	550 MHz	5.24288	± 1 PPM-RIXO	$\begin{array}{\|c\|} \hline 15 \mathrm{mV} \\ -24 \mathrm{DBM} \\ \hline \end{array}$	N/A	$\begin{gathered} (2) \\ .1 .1 \mathrm{SEC} \\ \hline \end{gathered}$		$10 \mathrm{~Hz}$		100 Hz		No	No	Yes	No
7010-s	600 MHz	10.0 MHz	$\begin{aligned} & =1 \text { PPM-TCXO } \\ & \pm 0.1 \text { PPM-TCXO } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 10 \mathrm{mV} \\ -27 \mathrm{DBM} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 20 \mathrm{mV} \\ -21 \mathrm{DBM} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { (3) } \\ 1,1,10 \mathrm{SEC} \\ \hline \end{array}$. $1 \mathrm{~Hz} \quad 1 \mathrm{~Hz}$		10 Hz		Yes	No	Yes	No
8007.S	700 MHz	10.0 MHz	± 1 PPM-TCXO $\cdot \pm 0.1$ PPM-TCXO ± 0.05 PPM $-O C X O$	$\left\lvert\, \begin{gathered} 10 \mathrm{mV} \\ -27 \text { DBM } \end{gathered}\right.$	$\begin{gathered} 20 \mathrm{mV} \\ -21 \mathrm{DBM} \end{gathered}$	$\begin{aligned} & \text { (4) } \\ & .01 .1 .1 \cdot 10 \\ & \text { SEC } \end{aligned}$.$^{1 \mathrm{~Hz}}$			1 Hz	10 Hz	Yes	ves	Ves	ves
8010.5	1 GHz														
8013-5	1.3 GHz														

OPTOelectronics inc.
5821 NE 14 AVE. FT. LAUDERDALE FL 33334

FREE
800-327-5912
FLA 305-771-2050
To US and Canada Add 5\% to max of $\$ 10$. per order for shipping/handling Foreign orders add 15%

CIRCLE 62 ON FREE INFORMATION CARD

Now NRI takes you inside the TRS-80 Model III microcomputer with disk drive to train you at home as the new breed of computer specialist!

It's no longer enough to be just a programmer or a technician. With microcomputers moving into the fabric of our lives (over 250,000 of the TRS- $80^{\text {TM }}$ alone have been sold), interdisciplinary skills are demanded. And NRI can prepare you with the first course of its kind, covering the complete world of the microcomputer.

Learn At Home In Your Spare Time

With NRI training, the programmer gains practical knowledge of hardware, to design simpler, more effective programs. And, with advanced programming skills, the technician can test and debug systems quickly and easily.

Only NRI gives you both kinds of training with the convenience of learning at home. No classroom pressures, no night school, no gasoline wasted. You learn at your convenience, at your own pace. Yet youre always backed by the NRI staff and your instructor, answering questions, giving you guidance, and available for special help if you need it.

You Explore the TRS-80 Model III Inside and Out

NRI training is hands-on training, with practical experiments and demonstrations as the very foundation of your knowledge. You not only learn to program your computer, you learn all about it . . . how circuits interact . . . interface with other systems . . . gain a real insight into its nature. Under NRI's carefully planned training, you even install a DISK DRIVE verifying its operation at each step.

4 -function multimeter, featuring full portability and a $31 / 2$-digit liquid crystal display. Using it along with the exclusive NRI Discovery Lab ${ }^{\circledR}$ and your TRS-80, you perform over 60 separate experiments. You learn how to troubleshoot and gain greater un-

Now training includes either the TRS-80 Model III Microcomputer with Disk Drive or TRS-80 Color Computer with Computer Access Card; professional LCD multimeter; the NRI Discovery Lab; and hundreds of demonstrations and experiments.
derstanding of any microcomputer from the information your testing procedures give you.

TRS-80 Model III With Disk Drive Is Yours To Keep

As part of your training, NRI sends you the TRS-80 Model III microcomputer plus DISK DRIVE. This functional unit is complete with 65 -key keyboard and $12^{\prime \prime}$ display in one desk-top unit. Its 32 RAM is internally expandable to 48 K and its BASIC language is compatible with most Model I software. It features built-in interface for parallel printer and disk drive which allows for high speed storage and rapid access and manipulation of data. This ensures a powerful and versatile computer at your command.

Along with your multimeter and the NRI Discovery Lab, this latest concept in advanced microcomputers is yours to learn

EOUIPMENT REPORTS
continued from page 14

15 millivolts RMS to 5 volts RMS. By setting the sensitivity only as high as necessary, you can reduce the effect of some interference.

At the bottom right of the panel is a high-impedance (1 megohm) AC-coupled input for signals with frequencies from 10 Hz to 120 MHz . To its left is a $50-\mathrm{ohm}$ AC-coupled RF input for signals from 50 MHz to 1 GHz .
The accuracy of the counter is determined by several factors. The relative fre-quency-error (or innaccuracy) can be
thought of as the sum of three terms: the resolution error, the trigger error, and the timebase error.

The resolution error is equal to LSD/ input frequency, where LSD is the Least Significant Digit. The LSD varies depending on whether the NORMAL or FAST mode is in use. (The normal mode yields 7-digit resolution, which results in an error between 1 part in 10^{6} and 1 part in 10^{7}. The fast mode yields 6- or 7-digit resolution, which results in an error between about 1 part in 5×10^{6} and 1 part in 5×10^{7}.

The second term is the trigger error, which can be written (measurement rate/ signal slope) \times noise voltage (P-P). We
> sOLTEC chan

The Professional Test Equipment Source
The InStrulnent Mart
295 Community Drive, Great Neck. New York 11021
(516) 487-7430 outside N.Y. [800] 645-6535
can see that the error decreases as the input signal's frequency and signal-tonoise ratio increase.
The final term in the error expression is the timebase error. Regardless of its initial accuracy, an oscillator's frequency will change with time and temperature. (That's why an internal adjustment is provided.) The standard counter model has a temperature stability (referenced to $25^{\circ} \mathrm{C}$) of 1 part in 3×10^{6} between 20° and $30^{\circ} \mathrm{C}$. An optional TCXO (or tempera-ture-compensated crystal oscillator), which the unit we recieved was equipped with, improves that figure to 1 part in 3×10^{7}.
The oscillator's aging rate is the longterm stability when all factors (temperature, voltage, etc.) are held constant. It is dependent on the processing of the crystal. The standard model claims an aging rate of 1 part in $5 \times 10^{7} /$ month, while with the TCXO that changes to 1 part in $10^{7 /}$ month.

If you don't want to use the PM 6668's internal oscillator, there is a BNC jack on the back of the unit that lets you connect your own $10-\mathrm{MHz}$ oscillator. (A jumper inside the case must also be changed if you want to do that.)

Now that you have a general idea of the capabilities of this counter, let's take a look at how the 8048 microprocessor makes the PM 6668 different from conventional counters.

Computing reciprocal counter.

In a conventional counter, the cycles of the input wave are counted during a set period of time - the gate time. As the frequency of the input signal increases, the number of cycles that are counted during the gate time increases and thus the relative resolution is increased. The PM 6668 (called a computing reciprocal counter by Philips) however, uses two counting registers that permit high-resolution measurements on low-frequency signals. The event register counts the cycles of the input wave, while the time register counts the cycles from a $10-\mathrm{MHz}$ reference oscillator. Both counts are sent to the microprocessor, which computes event counts/(time counts $\times 10^{-7}$) and sends that value to the display. The result is a resolution of $\pm 1 \mathrm{~Hz}$ in 10 MHz in the NORMAL mode (1 -second gate time).
The measured frequency is always displayed with maximum resolution without overflow-the decimal point and unit $(\mathrm{Hz}, \mathrm{kHz}, \mathrm{MHz})$ are automatically displayed properly. That automatic range selection is another feature that the microprocessor makes possible.

An available option-one our unit was not equipped with-is a rechargeable battery pack that fits inside the PM 6668 case and permits portable operation. When batteries are installed, a low-battery indicator on the display will become visible when there is less than 15 minutes of operating time left. The external-oscillator
jack that we just discussed can be replaced by a jack for connecting to an external 12volt supply. Complete instructions are supplied in the manual.

Self diagnosis

Another feature of the PM 6668 is the self-diagnosis routine that the microprocessor runs through whenever the unit is powered up. If a fault is found, then an error code (Errorl through Error6) will be displayed on the readout. By consulting the flowcharts in the service manual, you can isolate the fault. Let's give a quick example.

If "Error3" is displayed, you would, as the flowchart instructs, interchange two IC's that we'll call "A" and "B." If "Error 2 " is then displayed, you know to replace IC "A." However if that error message does not appear, then you have to check for a reset pulse at IC "A." If that pulse is missing, then you have to trace it to find the problem. But if the reset pulse is there, then the microprocessor must be replaced.
Of course, not all faults are handled by error displays. What the microprocessor does do is to test program memory and data memory; it also tests that the external logic can be set to zero. So, for example, a power-supply malfunction will not produce an error code. But even though there are many potential problems that the microprocessor will not indicate, you should have little problem if something goes wrong. As we have come to expect from Philips, the service manual is very helpful. It contains troubleshooting instructions and circuit descriptions, as well as maintenance instructions and performance checks.
In operation, the PM 6668 worked well. It is an easy-to-use instrument. But you must be careful to use high-quality, shielded test leads to avoid misleading readings. That's especially true in noisy environments-around computers, for example. If you need a lab-quality, highresolution frequency counter that can measure up to 1 GHz , we wouldn't hesitate to recommend this Philips unit. Its base price is $\$ 640$. With the TCXO option, that increases to $\$ 820$. The optional battery pack adds $\$ 200$ to either unit. R-E
continued on page 22

> Build a Personal Earth Station For Worldwide Satellite TV Reception

Here's the opportunity you've been waiting for . . . a one-stop, money-saving source that tells you HOW to pick out the best location for an earth station, WHERE to buy the best equipment possible (at a reasonable cost), and WHAT you need to know to hook it up, tune it in, and receive unlimited entertainment from every corner of the world.
You won't have to settle for the same old Cable TV menu anymore, because this guide shows you how easy it is to tune into first-run movies, world-class sporting events, 24 hour news, and entertainment specials from around the globe. No more costly cable rent bills-you own the equipment, you will be your own program director!

To order, call toll free: 800-233-1128. (In Pennsylvania, Hawaii,
and Alaska, call direct: 717-794-2191.)
TAB 10-Day FREE Trial Offer
Please send me \quad copies of Build A Personal Earth Station For
Worldwide Satellite TV Reception (Order No. 1409 H) at $\$ 15.95$. Bill me \$_ (plus postage and handling)
Check enclosed for $\$ \quad$ (TAB pays postage and handling)
Charge my \square VISA $\quad \square$ Master Card (TAB pays postage and handling)
Check enclosed for $\$ \quad$ (TAB pays postage and handling)
Charge my \square VISA $\quad \square$ Master Card (TAB pays postage and handling)
Charge my \square VISA \square Master Card (TAB pays postage and handling)
Charge my \square VISA \square Master Card (TAB pays postage and handling)
Account No. Expires
Account No. Expires
Signature $\longrightarrow 1$
Signature $\longrightarrow 1$
Name \longrightarrow
Name \longrightarrow
Address
Address
City/State/Zip
City/State/Zip
TAB TAB BOOKS Inc.
TAB TAB BOOKS Inc.
P. O. Box 40 PA add 6% sales tax. Foreign customers
P. O. Box 40 PA add 6% sales tax. Foreign customers
Blue Ridge Summit, Pa. 17214 must pay in advance in U.S. currency. RET-14A
Blue Ridge Summit, Pa. 17214 must pay in advance in U.S. currency. RET-14A
CIRCLE 59 ON FREE INFORMATION CAFD
CIRCLE 59 ON FREE INFORMATION CAFD

Heath EE-101 OperationalAmplifier Course

CIRCLE 102 ON FREE INFORMATION CARD

AT ONE TIME OR ANOTHER DURING EVERYone's involvement with electronics,there comes a period when a refresher course
might be needed. It doesn't matter whether you've worked with electronics for 25 years or 5 years, recent developments in the field have almost made it mandatory, especially if you want to remain current with up-to-date technology.

Even in such a take-it-for-granted area as operational amplifiers, there may come a need for fresh information. The problem that arises, though, is where do you get it? You can read manufacturers' specifications sheets or the latest technical manuals and papers, but those only give you the facts and figures. A better alternative is the op-amp course offered by Heath (Benton Harbor, MI 49022). It's part of their electronics technology education series and at $\$ 44.95$ for the text and study materials, it's a bargain.

The Heath Operational Amplifier Course (EE-101) combines written theory materials and hands-on experiments into a package that provides a comprehensive overview of operational amplifiers. It's more than enough to provide even the most jaded veteran of the electronics wars with some new insights.

As usual, when the course first arrived in the office, we were quick to inspect the contents and we found that everything needed to complete it was there. It was packaged in a heavy cardboard box, which contained a binder, the course material, and parts needed for the course experiments. As we were opening the ma-
terial, we also glanced through it and found it was well presented and very readable.

What's covered

The course material presents everything you wanted to know about op-amps, but might have been afraid to ask. For instance, the first chapter of the course takes you through op-amp basics and the characteristics of those devices. The second chapter takes you through some basic amplifier circuits and discusses the inverting and non-inverting amplifier, while the third chapter (Heath calls them units) moves to the differentiator and integrator.

The fourth chapter moves on to voltage and current regulator circuits, while chapter five takes you through non-linear sig-nal-processing circuits and discusses such items as comparators and Schmitt Triggers. Chapter six covers various generators, including sinewave, squarewave, and triangular-wave generators.

Other chapters move on through active filters and discuss bandpass filters, statevariable filters and notch filters. Singlesupply operation, including single-supply biasing, the inverting amplifier, the summing amplifier, and the difference amplifier are also covered.

The final chapter, chapter 10 , includes a discussion of the instrumentation amplifier or "committed gain" amplifier.

As you can see, the Operational-Am-

WHY SPEND A FORTUNE ON A DIGITAL CAPACITANCE METER?

As a matter of fact you don't have to pay $\$ 180$ to $\$ 500$ and up anymore for a Digital Capacitance Meter that is both depen dable and rugged with good accuracy. The MC100A comes completely assembled and calibrated and at $\$ 79.95$ is an outstanding value. The extensive range of 30 pF to $9,999 \mathrm{uF}$ (no external meters required) and true hand held portable size (only $4^{3 / 11} \times 21 / 2^{\prime \prime} \times 11 / 2^{\prime \prime}$) make the MC100A an extremely practical and easy to use instrument for the hobbyist technician or engineer.
CHECK THESE OTHER FEATURES

- Basic accuracy 2% (\pm one count) on pF, nF ranges, 5% (\pm one count) on uF range.
- Uses single 9 V battery (not included). - Decimal points light up when battery is low or when capacitor is overrange.
-Full 4 digit high efficiency LED display uses special circuitry to save on batteries. - Maximum conversion time for 9,999 uF is less than 6 seconds.
- Constructed with a tough impact resis. tant plastic case.
-90 day parts and labour warranty.

DAETRON
1748 MAIN ST, SUITE 105
BUFFALO, N.Y., SUITE
(416) 441 - 1733 (416) ${ }^{441-1733}$ DEALER ENQUIRIES INVITED

PLEASE SEND ME
(Quantity MC100A(s) \& S79.95 U.S
Shipping \& handiling $\$ 2.25$
\square IENCLOSE CHECK \square MONEY ORDER BILL MY VISA \square VISA CARD NO. \qquad EXPIRY DATE

Personal checks please allow 2 to 3 weeks for clearance
NAME
ADDRESS
CITY \qquad STATE
\longrightarrow

MAIL TO DAETRON 1748 MAIN STREET, SUITE 105 BUFFALO, N.Y. 14211

Here's How You Can Learn 16-Birrechnology. And Graduate To One Of Today's Most Powerful And Advanced Microcomputers.

Now you can master 16-bit technology with an all-new Advanced Microprocessor course. And build hands-on experience with the only 16 -bit microcomputer specifically designed for the hobbyist, working engineer and student.

Advanced Microprocessor Course

This all-new self-study course (EE-8088) provides indepth coverage of 16-bit, state-of-the-art technology.
You will gain a thorough understanding of microprocessors from this 1200 page course. In 10 easy-to-
 understand units, starting with microcomputer basics, you'll cover all phases of 16 -bit microprocessing. Assembly language. Program writing. Addressing modes. Dynamic and static RAM. And hardware interfacing.
And by using your 16-bit Trainer/Learning Computer for hands-on experiments (over 60 included), you'll gain actual circuit interface and software programming experience with an 8088 microprocessor system.

Trainer/Learning Computer

A unique combination of design features makes this versatile microprocessor system much more than a "teaching machine." Use it as a trainer with the Advanced Microprocessor course. Use it as an experimental design computer. And use it to run a wide variety of

16-bit software-including
Z-Dos, Multiplan, Z-Basic,
Condor File Manager, and much more.

In its most basic form, the Trainer/ Learning Computer is a 16-bit, cassette-based microcomputer. Its unique design features access ports and solderless breadboards to allow you to build interfaces, design and modify circuits, or simply experiment with the inner workings of the microprocessor system.
The basic system has an 8088 processor, 32K ROM (including assembler, editor and debugger) and 16K RAM.

The unit also features a serial I/O printer port, cassette interface and a detached 95-key keyboard (including 16 function keys and a numeric keypad) which generates a full ASCII character set. It's available either in kit form or factory assembled.
And you can take advantage of the system's H/Z-100 computer design heritage by easily upgrading it to a disk-based, 16-bit microcomputer that will run H/Z-100 series software and many other, forthcoming programs.

Fully Upgradeable
The powerful upgrade package and variety of accessories allow you to make the basic 16-bit system more powerful and versatile. You can add 128 K or 192K bytes of RAM. Floppy disk controller. 48TPI double-sided, double-density, single or dual floppy disk drive. Bitmapped video graphics or full-color graphics. Two RS-232 ports. Programmable timer. And a Centronicscompatible printer port.

Learn on it. Design with it.

Use it as a 16-bit computer.

It's the only 16-bit microprocessor system specifically designed to integrate theory with a hands-on understanding of how 16-bit computers work. And it's from Heathkit/Zenith Educational Systems, the world-leader in problem-solving courses, trainers and accessories to help you learn state-of-the-art technology.

DESIGNING DIGITAL SYSTEMS

Abstract

Meet the challenges of today's incredibly rapid changes in electronics quickly and easily. This innovative kit is as exciting as the circuits you build and explore.

Learn the wonders of digital electronics and see how quickly you are designing your own circuits with the SUPERKIT which contains:
Seven TTL integrated circuits, breadboard, LED's, and all the DIL switches, resistors, capacitors and other components to build interesting digital circuits; plus a very clear and thoroughly tested instruction manual. This course teaches Boolean logic, gating, R-S and J-K flipflops, shift registers ripple counters and half adders. You will learn about fault finding, improvisation and sub-system checking and the manual asks plenty of questions, but never leaves you stuck for an answer. You don't even need a soldering iron! Using the same breadboard you may construct literally millions of different circuits
Order one of our written Courses to complement your SUPERKIT.
Digital Computer Logic \& Electronics - An introduction to digital electronics designed specifically for the raw beginner. If you're just starting with Digital Electronics this is the Course for you
. $\$ 13.95$
DIGITAL COMPUTER DESIGN - A totally revised and updated Course using the programmed learning system. This book is not intended for beginners but is ideally suited to engineers, technicians and hobbyists who want to know more about digital electronics. . . . \$17.95

P.O. BOX 307, North Reading, MA 01864
 \title{ The professional breadboard. (For professional, hobbyist or student.)

 (For professional, hobbyist or student.)}

Global Specialties' PB-203A Proto-Board.
The solderless breadboard that set the industry standard for speed, versatility and convenience. With a capacity up to twenty-four 14-pin DIPs and three regulated power supplies (one fixed, two variable), PB-203A features a large array of sockets and bus strips that emulates standard PC layouts. Permitting instant insertion and removal of virtually any component from the largest DIP to the smallest discretes. Helping you design, assemble, test and modify circuits almost as fast as you can think! And built with professional durability, for all types of applications.
Our PB-203A. Only \$174* (kit \$149.95*) or PB-203 with single 5V supply, \$133.* One more reason so many people say "Proto-Board" for solderless breadboarding.
\section*{GLOBAL SPECIALTIES CORPORATION

70 Fulton Terr., New Haven, CT 06509 (203) 624-3103, TWX 710-465-1227}
OTHER OFFICES: San Francisco (415) 648-0611, TWX 910-372-7992, Europe: Phone Saffron-Walden 0799-21682, TLX 817477 Canada: Len Finkler Ltd Downsview Ontario
Call toll-free for details 1-800-243-6077 During business hours *Suggested U.S. resale. Prices. specifications subject to change without notice ©Copyright 1981 Global Specialties Corporation.

CIRCLE 96 ON FREE INFORMATION CARD
plifier Course easily provides you with a good refresher on op-amps. In fact, it covers them from A to Z.

Not only does it supply the basics, but it also reinforces those basics with a constant series of review quizzes and tests. Those quizzes and tests culminate in a final exam for the course, which you may return to Heath for grading. That constant reinforcement is a good educational technique and assures that you will retain much of what you have learned.

Reinforcement is also supplied through a series of hands-on course experiments that help you understand the material you are learning. Those experiments are done using components which Heath supplies. Included in the course are resistors (both 1% and 5% film types); a special lightdependent resistor; a 20K linear control; various capacitors, including electrolytics, mylars, and ceramics; diodes; indicators, and, of course, the op-amps.

The experiments are very beneficial to the learning process and point to one improvement in the material that is noteworthy. In other Heath courses, the general guidelines for circuit breadboarding are presented and you are then left to sketch out any further experiment layout on a separate piece of paper. In this course, Heath has taken the time to provide you with a printed template to help you with the wiring.

A nice added benefit to the course is that it can also serve as a reference source when you've completed it. Two appendices contain some of the latest specification sheets on many of the operational amplifiers in common use.

What's needed

At this point, it is fair to note that while the initial price for the course seems low, it can actually work out to be quite expensive for the newcomer to the electronics business or hobby. That's because the course experiments use certain basic test instruments, such as an oscilloscope, frequency counter, frequency generator, and digital multimeter. And, while all service technicians and many hobbyists may already have access to that equipment, a beginner may find himself spending upwards of $\$ 800$ to obtain all the items needed to get the full benefit of the course. In addition, the same breadboard/ trainer (ET-3300B) used in the other Heath courses is used here. That trainer costs $\$ 99.95$ in kit form; $\$ 179.95$ assembled. It is also available in a package consisting of the trainer kit and the course for $\$ 129.95$.

As you can see, it can be an expensive proposition to the person without access to the proper equipment. Keep in mind, though, that the list of need equipment includes only items that any reasonably equipped workshop should have.

One last note on the value of the course is the fact that it can earn you continuing education credits from Heath and those

State-of the-Art
 MDEOEQUPNENT
 Quality • Low Prices . Immediate Delivery

SPECAL!

BP STABILIZER/IMAGE ENHANCER/ RF CONVERTER/VIDEO FADER/2-WAY DISTRIBUTION AMPLIFIER

 OUR PRICE

Contains five units in one; stabilizer (video guard remover); image enhancer, video to RF converter; video fader, and dual output distribution amplifier. Stabilizer Will correct entire range of copy guard distortion such as jitter, vertical roll or black bar travelling through picture.
Enhancer Attain best picture for your preference. RF Converter Allows your TV set to receive video and audio signals from your image enhancer, guard stabilizer, video camera, computer, VCR, etc. The direct video signal from any video component can be fed into the V -1880 and converted to a usable RF signal that can go to your TV antenna terminals.
Video Fader Used to produce fade ins and outs.

NEW!

BP tv to stereo AUDIO ADAPTOR/ ENHANCER $\$ 9.95$ OUR PRICE

 Easily connects to any TV and Stereo Amplifier or simulated stereo sound. Makes taping TV Audio simple - TV can be located any distance from stereo. Delivers two channels of simulated stereo. With noise eliminator and special output level controls. Frequency response: $50 \mathrm{~Hz}-15,00 \mathrm{KHz}$.
NEW! BP VIDEO COLOR PROCESSOR/RF CONVERTER/ STABILIZER/3-WAY DISTRIBUTION AMPLIFIER

OUR PRICE

${ }^{5} 189^{95}$
Corrects video signal directly into tape not just on playback. Luminance meter monitors brightness levels for quality
 recordings. Can also be used between video cameras and VCR, VCR and VCR and from VCR to TV during playback mode. Corrects off-color tapes. Center detent, luminance, chroma, phase and audio controls. Stabilizer for removing copyguard.

BP VIDEO GUARD STABILIZER MODEL V-1875

OUR PRICE $\$ \mathbf{3 9} 9$
Has self contained A\&B and bypass switch. Many movies, concerts and special programs for sale or rental are copy guarded. This removes copy guard and allows you to make copies. Many TV sets will not play prerecorded tapes because copy guard causes picture to roll and jitter. turn to snow or disappear. Video Guard Stabilizer removes copy guard from signal.

BP RF CONVERTER/MODULATOR MODEL V-1885
 OUR PRICE s39 ${ }^{\text {s5 }}$

Allows your TV and audio signals from image enhancer, guard stabilizer, video
camera, computer, VCR, etc
The outputs of many video
components cannot be directly hooked up to the VHF antenna terminals on your TV set This problem is solved by using the Model V-1885 R Converter. Converts video signal from any video component to adjustable RF signal at antenna terminals. Allows your VCR output to feed two TV sets at the same time, with virtually no signal loss.

BP VIDEO SELECTOR CENTER MODEL V-4803

A switcher that can accept 6 inputs and direct them to 3 outputs. Utilizes switch similar to one used or home VCR's. You avoi signal loss incurred by using splitters.

OUR PRICE $\$ 49^{95}$

JERROLD 58 CHANNEL

CORDLESS TV CONVERTER MODEL LCC-58 (DRX 3-105)
OUR PRICE $9 \mathbf{9}^{\mathbf{9 5}}$
Receive up to 58 TV channels, Remote TV Control. Attaches to any age or model TV in minutes. No tools required. On/Off
button, Channel selection, Channel Stepping, Fine Tuning

BP UHF CABLE CONVERTER
WITH FINE TUNING/46 CHANNEL MODEL V-5746

Fully shielded

 oscillator eliminates oscillator eliminatesherring bone distortion For BetaVNHS recording. Record use TVs remote use TVs remole programming of VTR

BP VIDEO GUARD STABILIZER/ RF CONVERTER MODEL
V-1877

OUR PRICE
Same as V -1875 but with a built-in RF Converter that gives the model V-1877 an RF output which can be fed directly to the antenna terminals of a TV set. This enables you to remove the copy guard from a pre-recorded tape and view it on a TV using only a VCR.
Use as an RF Converter only. Used in conjunction with your TV, you can feed direct audio and video signals trom any video device such as video camera. computer, portable VCR. etc.

BP IMAGE ENHANCER

MODEL V-1860
Dramatically improves
performance
of video
cameras
and-the-air
or second
or second
generation
recordings).
ling for deteriora
ling for deteniora-

ion-or dela and
sharpness. Includes video distribution amplifier with two video outputs.

$11 \mathrm{I} \mid$ ntash STEREO CATALOG and FM DIRECTORY

Get all the newest and latest information on the new McIntosh stereo equipment in the Mcintosh catalog. In addition you will receive an FM station directory that covers all of North America.

If you are in a hurry for your catalog please send the coupon to McIntosh. For non rush service send the Reader Service Card to the magazine.

CIRCLE 93 ON FREE INFORMATION CARD

\begin{tabular}{|c|c|}
\hline \&

\hline \multirow[t]{21}{*}{\begin{tabular}{l}
Build Your Own Satellite TV Receiver $\$ 7.00$

8-Ball Satellite TV Antenna $\$ 5.00$

Build Your Own Robot $\$ 12.00$

TV Descrambler (January, February 1981) \$3.00

Radio-Electronics back issues (1983) $\$ 3.00$

(January, February 1983 not available)

Write in issues desired \qquad

Radio-Electronics back issues (1982) \$3.50 (January 1982 not available)

Write in issues desired

\qquad

Radio-Electronics back issues (1981) $\$ 4.00$ (February, March, December 1981 not available) Write in issues desired.

\qquad

Etch your own PC boards $\$ 3.00$

To order any of the items indicated above, check off the ones you want. Complete the order form below, include your payment, check or money order (DO NOT SEND CASH), and mail to Radio-Electronics, Reprint Department, 200 Park Ave. South, New York. NY 10003. Please allow 4-6 weeks for delivery.

If you need a copy of an article that is in an issue we indicate is unavailable you can order it directly from us. We charge $50 ¢$ per page. Indicate the issue (month \& year), pages and article desired. Include payment in full, plus shipping and handling charge.
\end{tabular}} \& \square Special Projects (Spring 1981) $\$ 4.50$

\hline \& \square Special Projects \#4 (Summer 1982) \$4.50

\hline \& \square Special Projects \#5 (Winter 1983) $\$ 4.00$

\hline \& \square Special Projects \#6 (Spring 1983) \$3.50

\hline \& \square Special Projects \#7 (Summer 83) NOT AVAILABLE

\hline \& \square Special Projects \#8 (Winter 83) \$3.00

\hline \& \square Radio-Electronics Annual 1983 \$3.50

\hline \& \square Radio-Electronics Annual 1984 $\$ 2.50$

\hline \& \square Radio-Electronics Annual $\$ 2.50$

\hline \& \square How to Make PC Boards \$2.00

\hline \& \square All About Kits \$2.00

\hline \& \square Modern Electronics (Vol. 1. \#1 \$2. 25

\hline \& April 1908)

\hline \& Electro Importing Co. Catalog \qquad $\$ 4.95$ (1918) (176 pp)

\hline \&

\hline \&

\hline \& ARTICLE

\hline \& MONTH YEAR

\hline \&

\hline \& PAGES

\hline \& | \qquad @ $50 ¢$ each \qquad |
| :--- |
| TOTAL PAGES |
| TOTAL PRICE |

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{| MAIL TO: Radio-Electronics |
| :--- |
| Reprint Department, 200 Park Ave. South, New York, NY 10003 All payments must be in U.S. funds |}}

\hline \&

\hline \multicolumn{2}{|l|}{Total price of order . \$}

\hline Sales Tax (New York Slate Residents only). \&

\hline \multicolumn{2}{|l|}{Shipping \& Handling (U.S. \& Canada only) (Includes F!RST CLASS POSTAGE) \$1.00 per item \$}

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{| All other countries ($\$ 2.00$ per item, sea mail) \qquad |
| :--- |
| ($\$ 4.00$ per item, air mail) |}}

\hline \&

\hline \multicolumn{2}{|l|}{Total Enclosed}

\hline \multicolumn{2}{|l|}{Name}

\hline \multicolumn{2}{|l|}{Address}

\hline City \& State __ Zip

\hline
\end{tabular}

credits are accepted by some colleges for work toward a degree.
Overall, the Heath $E E-101$ Operational Amplifier Course is a worthwhile instructional program and one of the best ways we know of to learn about operational amplifiers.

R-E

Triplett Model 3550 DMM

CIRCLE 103 ON FREE INFORMATION CARD

THE WORLD OF ELECTRONIC TECHNOLOGY is changing so rapidly that it is hard to imagine what tomorrow will bring. And as electronic equipment becomes more and more sophisticated, so must the instruments used to service it. That, of course, holds true for DMM's. Over the years, that basic instrument has been constantly upgraded and redesigned to make test and repair procedures more simple, less time consuming, and more accurate. The Triplett Corporation (One Triplett Drive, Bluffton, OH 45817) in keeping with that trend, has introduced the model 3550, the latest in its line of DMM's. We thought you might like to know a little about it.

That meter is designed for ease of use. For instance, the eight range and function controls are located so that they can be operated by the hand holding the meter, leaving the other one free for placing probes, etc. Those probes connect to the device through three jacks that are located at the bottom of the case. The jacks are of the recessed type, meaning that there is no metal exposed when the probe is plugged
continued on page 32

Here's the one guide that has it all-the new ECG ${ }^{*}$ Master Guide. It's 545 pages, packed with over 3000 ECG semiconductors that replace over 200,000 industry numbers. And our replacements meet or exceed the specs of the original parts. So if it's ECG, you can count on it to fit and work.

Reduce equipment downtime and save yourself endless hours of parts hunting. For everything from analog amplifiers to zener diodes, go with replacement semiconductors from ECG. Get your new ECG Master Guide and our "Counterpoints" product updates from your nearest distributor. For his name and number, call 1-800-225-8326 toll-free (in Massachusetts, dial 1-617-890-6107). Or just send $\$ 3.25$ for your ECG Master Guide to Philips ECG, Inc., Dept. RE,

70 Empire Drive, West Seneca, NY 14224.

small

PACKAGE

Video Generator

- Video output for all VCR, CCTV and Monitor Applications + 1 volt into 75Ω load
- RF output: CH 2, 3, 4
- Scope trigger output for V or H sync
- 10 step gray-scale staircase signal for video circuit analysis
- 10 bar and 3 bar gated rainbow pattern
- 8 other dot, bar and line patterns
- Operates from 2 std. 9 V batteries or 115VAC
- Single slide switch control
- Complete with test leads, protective cover, AC adapter, comprehensive instruction manual

PRICED UNDER \$200. THE 240 DOES SO MUCH FOR SO LITTLE!!

THE HICKOK ELECTRICAL INSTRUMENT CO. 10514 Dupont Avenue - Cleveland. Ohio 44108 (216) 541-8060 . TWX: 810-421-8286

Amazing new solidstate oscilloscope... fits in the palm of your hand

CRT oscilloscopes just became

 obsolete! The revolutionary new solid-state digital LED Pocket-O-Scope does it all, in a 4 -ounce package you can put in your pocket.Easy to use. Ideal for the hobbyist or the technician. The Pocket-O-Scope is 100% solid-state, focus and brightness on the 210 point, high-intensity illuminated screen are electronically self-controlled. The trace is always in sharp focus. Zero and sweep positions are maintained automatically. Zero-reference, or cross-over line is always centered for full trace minimum on the screen. Automatic internal circuitry always assures a properly positioned wave form. 4 solid-state controls do it all. The only knobs on the Pocket-O-Scope are for positive and negative sensitivity and for coarse and fine synchronization of the frequency of the incoming signal. The easiest to use, full capability scope available!
Years in development. The Pocket-O-Scope is the culmination of years of development in high technology, microelectronic components and digital design.
Features: All solid-state, digital design \bullet Hand-held or bench operation \bullet High resolution 210 point, $1.5^{\prime \prime}$ square display \bullet Battery or A / C operation with adapter \bullet Factory calibrated - never requires recalibration \bullet Full function, single trace capability plus $1 / 2$ channel dual trace and signal
 inverter \bullet Full overload protection to prevent damage to scope - Automatic zero voltage centering • Automatic free run or locked image \cdot Automatic full horizontal sweep circuit \bullet External input/output for add-on capability Specifications: 5 Megahertz bandwidth • Sensitivity vertical, 10MV• Accuracy $\pm 3 \%$ on wave forms sweep linearity \pm $5 \% \cdot$ Time base -. 1 microseconds to .5 seconds

- Vertical gain - 0 to 120 volts \bullet Continous free run to locked image response \bullet Power supply 9VDC-dual polarity Controls: Single or dual trace \bullet On-off, battery-A/C \bullet Sensitivity; separate pos. \& neg. controls \bullet Sync C \& Sync F controls
Limited, 90 -day warranty
No risk introductory offer. The revolutionary Pocket-OScope is a development of Calvert Instruments, Inc., for 25 years a manufacturer of electrical equipment. As an introductory offer for a limited time only, you can buy the Pocket-O-Scope including a carrying case, A/C adapter, 3 standard "grabber" probes and 2 high voltage probes for only $\$ 249.95$, a $\$ 321$ value. If you act now, you will also receive FREE Calvert's 200 -page Comprehensive Oscilloscope Training Manual, a $\$ 15.95$ value! two weeks. And if you decide, for any reason, that the Pocket-O-Scope is not for you, return it within the 14 -day trial period for a prompt refund. The training manual will still be yours to keep.

Mail this coupon today, or call toll-free* while the introductory offer is still in effect.

[^1]In Kansas, call 800-362-2421 Ext. 118. Allow 6-8 weeks for delivery.

DC power to test logic or mobile equipment. Another VIZ Value

HERE'S REAL PRECISION
Select the precise voltage you want: 5 V or 13 V , adjustable $\pm 11 / 2 \mathrm{~V}$ at each range. Output is laboratory quality. Ripple less than 10 mV , peak to peak. Regulation better than 0.1\%
HERE'S REAL POWER Up to 7.5 amp . at each voltage -
plenty for computer circuits, PA systems, mobile transmitters, autos, boats, planes.
HERE'S REAL CONVENIENCE Front panel controls for instant voltage adjustment and precise fine adjustment to within 0.1 V . Two 3-digit LED displays permit continuous
monitoring of both voltage and current during use. Current limiting control with instant pushbutton reset.
The WP-709 is like two precision power supplies for a price less than you might pay for one-PLUS two digital DC voltmeters.

VIZ Supplyst ${ }^{\text {TM }}$

power supplies with digital displays of voltage and current

WP-705 \$325.00
Single output
$0-50 \mathrm{VDC} .0-2 \mathrm{~A}$.
WP-707 \$423.00
Dual output
Two 0-25VDC. 0-2A.

Fully regulated, adjustable current limiting power supplies, PLUS two built-in digital DC voltmeters in a single quality unit. Digitally monitor output voltage or current, or two external voltages.

WP-706 \$341.00
Single output $0-25$ VDC. 0-4A.

WP-708 \$489.00
Triple output Two 0-20VDC, 0-2A One 5VDC, 0-4A

VIZ DC power supplies

Fully regulated, continuously adjustable voltage outputs with short circuit protection. Analog meters and overload indicators.

Single WP-703A $0-20 \mathrm{VDC}$. . $0-500 \mathrm{~mA}$
$\$ 119.00$

Single WP-704A
$0-40 \mathrm{VDC} . \quad 0-250 \mathrm{~mA}$
$\$ 125.95$

VIZ RELIABILITY

VIZ is a 50 year-old company. Our instruments are
fully warranted, parts and labor, for a year. All items tested to NBS standards. We offer service and parts availability for a minimum of ten years. Over 15 repair depots in U.S.A.

Want full technical details and a demonstration? Call toll-free. 1-800-523-3696, for the VIZ distributor nearest you
Look to VIZ for value, quality, availability. Over 70 instruments in the line-PLUS full accessories.
50% RH and three to five minutes from 50 to 90% RH. It is supplied complete with remote probe, carrying case, and battery. The model DH200 is priced at $\$ 249.00$.-Pacer Industries, Inc., 1450 First Avenue, Chippewa Falls, WI 54729.

COMPUTER SYSTEM, the Jupiter Ace 4000, uses the FORTH programming language and can serve as an intelligent programmable controller when combined with interfaces suitable for control of DC or AC power.
The basic machine includes the Z80A microprocessor operating at 3.25 MHz , an implementation of the FORTH 79 standard in ROM, and an internal timer. User RAM is expandable to 51 K . It supports a text mode of 32 columns by 24 lines and a low-resolution graphics mode of 64 by 46 pixels. A 256- by 192 -pixel mode is also available. The machine can be directly connected to video monitors.
The Jupiter ACE 4000 has 40 moving keys with auto repeat, caps lock, and alternate functions. Sound is available through an internal speaker. A high-speed cassette interface provides program and data storage.

CIRCLE 107 ON FREE INFORMATION CARD
Expansion capability has been provided through direct connection to the Z80A bus from a rear-panel connector. ROM, RAM, or peripherals can be connected to the expansion port. The FORTH words IN and OUT can directly address peripherals at assigned port numbers.
The Jupiter ACE 4000 is priced at $\$ 175.00$. The book, Jupiter Ace-FORTH Programming, is available for $\$ 14.95$ separately.Computer Distribution Associates, 17 South Main Street, Pittsford, NY 14534.

RECEIVERS, model KR-950 (shown) and model KR-930 are computerized AM/FM stereo receivers, featuring digital quartz-PLL synthesizer tuning systems, digital two-deck tape dubbing/monitoring, dual speaker-system capability ($A, B, A+B$), and headphone jacks. The tuner sections provide presets for six FM and six AM stations, and automatic scan tuning.
The model $K R$-950 delivers 80 watts per channel, minimum RMS, both channels driven at 8 ohms from 20 to $20,000 \mathrm{~Hz}$ with no

CIRCLE 108 ON FREE INFORMATION CARD
more than 0.01% harmonic distortion. FM sensitivity is $1.9 \mu \mathrm{~V}$; signal-to-noise ratio is 80 dB in mono, 76 dB in stereo. It is priced at $\$ 530.00$.

The model KR-930 has a minimum output of 50 watts per channel RMS, both channels driven at 8 ohms, with no more than 0.05% THD. FM sensitivity is $1.9 \mu \mathrm{~V}$ and signal-tonoise ratio is 80 dB (mono) and 76 dB (stereo). It is priced at $\$ 380.00$.-Kenwood, 1315 East Watsoncenter Road, Carson, CA 90745.

LIGHTING INSTRUMENT, model MX114, is a combination fluorescent lamp with a 5 -inch, $3 \times$ distortion-free magnifying lens. It is constructed of heavy-duty metal, fully adjustable to any angle, with a maximum reach of 45 inches. Included with the lamp is a 22 -watt circline fluorescent light and a heavy-duty

CIRCLE 109 ON FREE INFORMATION CARD
clamp-type mounting bracket. The model MX114 is priced at $\$ 79.95$.-Ora Electronics, 18215 Parthenia St., Northridge, CA 91325.

PLOTTERS, model HP 7475A (shown at right in photo) and model HP 7470A (shown at left in photo) are compatible with personal computers from Apple, IBM, Hewlett-Packard, and many others.

The model HP 7475A accepts 11×17-inch paper, $81 / 2 \times 11$-inch paper, and overheadtransparency film. With its six-pen carousel, the plotter can produce a variety of multicolor pie, bar, line, and text charts. Resolution is as fine as 0.001 inches.

Pens are selected from the carousel by either front-panel controls or program commands. When returned to the carousel, pens are capped automatically to prevent dry-out. A variety of pen colors and widths is available. continued on page 114

Auto/manual ranging DMMs

Model 2806

- Autoranging on volts and ohms
- Manual ranging on amps
- 0.7% DC accuracy
- 500 hour battery life
- Continuity test beeper
- Diode check
- Transient and overload protected
- High energy fuse

Model 2807 \$115
Manual or autoranging on volts and ohms with 0.5% DC accuracy.
Model 2816 \$150
Same features as 2807 with 0.25% DC accuracy.

For more information contact your B\&K-PRECISION distributor or write for specifications.

PRECISION

DYNASCAN

CORPORATION
6460 West Cortland Street
Chicago, Illinois 60635 • 312/889-9087 international Sales. 6460 w. Cortland st. Chicapo. 1160635 South and Central American Sales,
Empire EXPorters. Plainview. NY 11603

"All of the information needed for a basic understanding of almost any electronic device or circuit," says Radio Electronics.
A complete self-study course in electronics, this incredibly thorough sourcebook covers everything from atoms and electrons to the newest computer and digital electronics technology!
An ideal reference for every hobbyist and experimenter, it's arranged in logical chapter groupings by topic so you can quickly and easily locate exactly the information you need when you need it!
Packed with hands-on experiments that demonstrate how electronics theories work in real life applications ... 530 information-filled pages and more than 700 clear, concise drawings, illustrations, and schematic diagrams!

Save $\mathbf{2 0} \%$ by ordering your copy of Basic Electronics Theory now, during this special Limited-time offer!

Order by mail, or Call Toll Free 800-233-1128 (Alaska, Hawaii, and Pennsylvania Call Direct: 717-794-2191)

10-Day FREE Trial Offer

Examine FREE for 10 Days. If not completely satisfied, return the book. You'll pay nothing, owe nothing.

TABP.O. Box 40, Blue Ridge Summit, Pa. 17214 Please send me Basic Electronics Theory With Projects \& Experiments (Order No. 1338H), a regular $\$ 19.95$ value for $\$ 15.95$. (Limited Time Offer)
Bill me \$ \qquad (plus postage and handling)
Check enclosed for \$ \qquad (TAB pays postage and handling) Charge my \square VISA MasterCard (TAB pays Expires
Account No.

Signature
Name
Address
City/State/Zip
Pa add 6% sales tax. Foreign customers must pay in advance in U.S. dollars.

EOUIPMENT REPORTS

continued from page 26
in. In addition, when plugged in, the probes seat firmly, making it difficult to accidently unplug them. The probes that come with the meter have a protective collar for working safely with high voltages, and sharp tips to make good contact on PC boards, etc.

All measurements are shown on a large, $31 / 2$-digit LCD readout. Decimalpoint placement is automatic. Display annunciators include polarity and low battery. Battery life is claimed to be 200 hours with a standard nine-volt transistor-radio-type battery, or longer if alkaline units are used.
Looking more closely at the controls, two of them (located at the top and bottom of the row of pushbutton switches) are used to select the functions. The bottom switch is used to select whether current/ voltage or resistance is to be measured; whether current or voltage is to be measured is determined by which of the input (mA or $\mathrm{v} \Omega$) jacks the positive lead is connected to.
The top switch is used to set the meter to measure either AC or DC voltage or current. Also, when measuring resistance, the top switch is used to set the meter to either the HI v or Lo v mode. In the Hı \vee mode, the meter has an output of 3 volts; that's enough to turn on any diode or transistor junction without damaging the device. That mode is useful for testing diodes, transistors, etc. In the lo v mode, the meter has an output of 0.26 volt; that is useful for testing circuits that contain semiconductors such as diodes and transistors because that low voltage level will not turn on a junction.
The remaining six switches are used for range selection. The meter measures AC and DC current in 5 ranges, from $200 \mu \mathrm{~A}$ to 2000 mA , full scale. Resistance is measured over 6 ranges, from 200 ohms to 20 megohms, full scale. Turning to voltage, it is measured over 5 ranges, from 200 mV to $1000 \mathrm{DC}(750 \mathrm{AC})$, full scale.

Every range, including the resistance ranges, is overload protected to 250 -volts RMS according to the manufacturer. The meter's accuracy is claimed to 0.25%. The response time is good for a meter of this type, varying between one and eight seconds, depending on the function and range.

The attractive tan case is made of highimpact plastic. There is a flip-out bail in the rear for bench use.

The instruction manual is simple, yet contains all the information most users are likely to need including a schematic and parts list. The meter is covered by a one-year limited warranty.

All-in-all, the model 3550 is a very useful little instrument for the hobbyist or technician. It carries a suggested list price of $\$ 85$.

R-E

At CIE, you get electronics career training from specialists.

If you're interested in learning how to fix air conditioning, service cars or install heating systems- talk to some other school. But if you're serious about electronics... even earning an Associate Degree... come to CIE -The Electronics Specialists.

Why trust your education and career future to anything less than a specialist?

You shouldn't. And you certainly don't have to.

If you talked to some of our graduates, chances are you'd find a lot of them shopped around for their training. They pretty much knew what was available. And they picked CIE as number one.

Be sure to shop around. Because, frankly, CIE isn't for everyone.

There are other options for the hobbyist. If you're the ambitious type-with serious career goals in electronics-take a close look at what we've planned for you at CIE. What you should look for first.

Part of what makes electronics so interesting is it's based on scientific discoveries-on ideas! So the first thing to look for is a program that starts with ideas and builds on them!

That's what happens with CIE's Auto-Programmed ${ }^{\text {º }}$ Lessons. Each lesson takes one or two principles and helps you master them -before you start using them!
How practical is the training?

This is the next big important question. After all, your career will be built on what you can doand on how well you do it.

Here are ways some of CIE's career courses help you get your "hands-on" training...
With CIE's Personal Training Laboratory... you learn and review the basicsperform dozens of experiments. Plus, you use a 3 -in-1 precision Multimeter to learn testing, checking, analyzing!
When you get your own 5 MHz , solid-state oscilloscope, you take some real professional steps. You use it as a doctor uses an X-ray machine-to "read" waveform patterns...lock them in...study, understand and interpret them! When you get your Digital Learning Laboratory, you'll
be into digital theory-essential training today for anyone who wants to keep pace with the state of the art of electronics. With CIE's Digital Lab, you'll be applying in dozens of fascinating ways the theory you've learned. For example, you'll compare analog and digital devices. You'll learn to make binary to decimal conversions and to work with semiconductor devices and circuits. You'll see how digital equipment is vital to today's exciting, growing fields such as security... where digital theory provides the brains for space-age alarm and protective devices.

You'll build your Microproc-

 essor Training Laboratory, a working microcomputer-from "scratch." You'll also learn how to program and interface it with displays, memories, switches, and more.
Earn An Associate Degree

 from CIE.One of the best credentials you can have in electronics -or any other career field -is a college degree. That's why CIE gives you the opportunity to earn an
in Electronics Engineering Technology. Any CIE career course can offer you credit toward the degree...more than half of the number needed in some cases.

You can also prepare for the government-administered FCC (Federal Communications Commission) Radiotelephone License, General Class. It can be a real mark in your favor... government-certified proof of your specific knowledge and skills.
Shop around...but send for CIE's free school catalog first!
Mail the card. If it's gone, cut out and mail the coupon. If you prefer to write, mention the name and date of this magazine. We'll send you a copy of CIE's FREE school catalog-plus a complete package of independent home study information! For your convenience, we'll try to have a representative contact you to answer your questions. Mail the card or couponor write: CIE, 1776 East 17th St., Cleveland, OH 44114.

[^2]
Sliding-tone doorbell

FIG. 1

HAVE YOU EVER BEEN STARTLED BY YOUR own doorbell? I have heard some doorbells that are so harsh and startling that they are sure to wreck anyone's nerves. But my doorbell is not of that type-at least not any more.

But if your bell is of that type, don't despair. I'll show you a way to prevent your quiet home from being disturbed. You can replace your harsh-sounding, nerve-wracking bell with what I'll call a "mild dose of sound stimulation." When the doorbell is pushed, you'll hear a low tone that will "slide up" to a higher frequency.

Figure 1 shows the sliding-tone doorbell circuit. It's made up of two main parts: an AF (Audio Frequency) oscillator and a variable resistance.

The frequency of the AF oscillator is determined by two factors. The first is the value of the coupling capacitor, Cl . The second is the value of the resistance connected between the base of Q1 and ground. That resistance, which we'll call $R_{B G}$, is equal to $(R 1+R 2) \| R 3$.

When either of those two factors increases, the frequency of oscillation will
decrease. Thus, whenever R_{BG} or Cl decreases, the frequency will increase.

First, assume that S1 is closed and R2 has been adjusted to produce a pleasant, low-frequency tone. Capacitor C3 will charge through R6 until it reaches such a voltage that will cause diode D1 to conduct. When that happens, the value of $R_{B G}$ is paralleled by $R 4$. Thus, because the total resistance $R_{B G}$ decreases, the output tone slides up in frequency. Capacitor C3 will continue to charge until the voltage across D2 and D3 causes those diodes to conduct. Then $R_{B G}$ is paralleled also by R5, the total resistance again decreases, and the oscillator's frequency again increases.

If you're not satisfied with how the "bell" sounds, there are several things you can do. First, if you want to change the tone variation, feel free to try different values for R2, R4, and R5. And if you want to vary the sliding speed of the tone, then you can try different values of R6.

As with the rest of this easy-to-build circuit, the transistor types are not critical. Feel free to experiment!-Tseng C. Liao

NEW IDEAS

This column is devoted to new ideas, circuits, device applications, construction techniques, helpful hints, etc.

All published entries, upon publication, will earn $\$ 25$. In addition, Panavise will donate their model 333-The Rapid Assembly Circuit Board Holder, having a retail price of $\$ 39.95$. It features an eight-position rotating adjustment, indexing at 45 -degree increments, and six positive lock positions in the vertical plane, giving you a full ten-inch height adjustment for comfortable working.

I agree to the above terms, and grant Radio-Electronics Magazine the right to publish my idea and to subsequently republish my idea in collections or compilations of reprints of similar articles. I declare that the attached idea is my own original material and that its publication does not violate any other copyright. I also declare that this material has not been previously published.

Title of Idea

Signature

Print Name		
Street		
City	State	Zip
Mail your idea along with this coupon to: New Ideas Radio-Electronics, 200 Park Ave. South, New York, NY 10003		

FORDHAM DISCOUNTS DISCOUNT PRICES ON HITACHI SCOPES

35 MHz DUAL TRACE SIGNAL DELAY LINE

WITH PROBES

60 MHz DUAL TRACE DELAYED SWEEP

High sensitivity $01 \mathrm{mV} / \mathrm{div}$ (10 MHz) - $5 \mathrm{~ns} /$ div sweep rate - 3rd channel display (trigger view) - Variable trigger hold-off - Full TV trig-
gering © Single OUR PRICE sweep • Automatic focus correction.
\$0 0
WITH PROBES
100 MHz QUAD TRACE DELAYED SWEEP
Large, bright $8 \times 10 \mathrm{~cm}$ screen

- Quad trace operation/Ch1, Ch2, A trigger and B trigger \bullet High sensitivity $500 \mu \mathrm{~V} / \operatorname{div}(5 \mathrm{MHz})$ - Full TV triggering. OUR PRICE Sc 095

WITH PROBES
toll free (800) 645-9518

Model V-1050-F

in N.Y. State 800-832-1446
 ADD FOR SHIPPING AND INSURANCE

Where's Your ELECTRONICS Career Headed?

The Move You Make Today Can Shape Your Future

Yes it's your move. Whether on a chess board or in your career, you should plan each move carefully. In electronics, you can move ahead faster and further with a

B. S. DEGREE

Put professional knowledge and a COLLEGE DEGREE in your electronics career. Earn your degree through independent study at home, with Grantham College of Engineering. No commuting to class. Study at your own pace, while continuing your present job.

The accredited Grantham non-traditional degree program is intended for mature, fully employed workers who want to upgrade their careers . . . and who can successfully study electronics and supporting subjects through

INDEPENDENT STUDY, AT HOME

Independent Home Study Can Prepare You

Study materials, carefully written by the Grantham staff for independent study at home, are supplied by the College, and your technical questions related to those materials and the lesson tests are promptly answered by the Grantham teaching staff.

Recognition and Quality Assurance

Grantham College of Engineering is accredited by the Accrediting Commission of the National Home Study Council.

We are located at 2500 S. LaCienega Blvd., Los Angeles, California, but for faster response please use our mailing address: P. O. Box 35499, Los Angeles, CA 90035.

AM stereo broadcasting is now well under way and more stations are beginning stereo broadcasts every week. Hear for yourself what all the fuss is about by converting your AM radio to receive C-QUAM stereo broadcasts.

STEREO BROADCASTING BY AM RADIO stations was authorized in March, 1982 by the Federal Communications Commission (FCC). AM broadcasters hoped that the introduction of stereo would help to bring back many of the listeners they lost to FM radio. If you want to find out what AM stereo sounds like, it's easier than you think. You don't have to go out and buy some special receiver-you can convert your present AM radio to receive stereo C-QUAM broadcasts.

The C-QUAM system, designed by Motorola, is one of four systems that the FCC authorized for AM stereo broadcasting. (The Commission declined to determine which of several competing technologies would become the industry standard and instead took a "wait-andsee" attitude. In that way, the marketplace could decide which system would become the standard.) In this article, we will take a look at what the C-QUAM system is and then we'll look at how an AM radio

[^3]can be converted to decode stereo
Let's say right from the start, though. that many radios are simply not capable of handling stereo. We'll explain the reasons for that and we'll explain ways around some of the problems. Because AM radios now on the market were not designed to accommodate stereo requirements, you might convert a radio but then be disappointed by the results. We'll give you some pointers on how to choose a good candidate for conversion.

Each of the hundreds of radio designs will probably behave and sound a little different. But each radio's problems can be resolved with the right know-how and test equipment. For those of you who are not equipped to handle such problems. the stereo conversion may be a disappointment, and you might be better off to wait a few months until the AM stereo receivers become available in the marketplace. But if you want to learn about this new system, and you have a good receiver to start with, then the conversion described here should be accomplished easily and successfully.

What is C-QUAM?

C-QUAM is an acronym for Compatible QUadrature Amplitude Modulation. That's certainly a mouthfull-let's see what it means. The most important word there is compatible. That means that any ordinary (monaural) AM radio can receive a C-QUAM broadcast and produce the same results as it would if it received a monaural signal. In other words, the CQUAM system does not make standard radios obsolete-as is necessary to gain FCC approval. C-QUAM is a quadrature system. That means that it somehow uses the relationship between two periodic functions that differ in phase by 90° We'll take a closer look at that shortly. But let's first say that the final term in the acronym indicates that the transmitted signal is amplitude-modulated by each of the two periodic functions that we just mentioned.

A quadrature system combines and transmits two signals that are 90° out-ofphase with each other. Of course, those two signals must be separated again at the receiver, and that's the purpose of this

FIG. 1-YOU CAN THINK of a quadrature transmitter as one actually made up of two transmitters that are out of phase by 90°.
decoder. AM stereo is not the only place that quadrature modulation is used. For example, color information for TV broadcasts is transmitted in a similar way.

You can think of the quadrature transmitting system as one with two transmitters, as shown in Fig. 1. One transmitter is a standard AM transmitter at, say, zero phase. It transmits a carrier as well as sidebands that contain audio information (the I sidebands). The second transmitter operates 90° out-of-phase with the other. Because a carrier already exists to provide a phase reference for the receiver, we do not want another to be generated. So the second transmitter cancels out the carrier and produces only sidebands (the Q sidebands). Now, since those Q sidebands are generated from a carrier that is 90° out-ofphase from the original carrier, they are 90° out-of-phase with the I sidebands. In other words, the I and Q sidebands are in quadrature.

What information do the I and Q sidebands contain? The I sidebands contain the sum of the left- and right-channel audio information, or $\mathrm{L}+\mathrm{R}$ signals. The Q sidebands contain the difference of the information of the two audio channels, or $\mathrm{L}-\mathrm{R}$ signals.

There is a problem with quadraturemodulated signals, though. They produce distortion in the envelope detectors of normal AM radios. So a quadrature stereo system is not compatible with existing radios. That's because the envelope detectors in normal AM radios don't see the I and Q sidebands separately-they see the sum of the two, as shown in Fig. 2-a. One vector represents the $\mathrm{L}+\mathrm{R}$ information that is modulated on the carrier (at what we'll call 0°). The other vector is the The $\mathrm{L}-\mathrm{R}$ information that's modulated on the suppressed carrier (at what we'll call 90°). The magnitude of the sum of those two vectors-which the receiver's envelope detector sees-is:

$$
\sqrt{(1+R+R)^{2}+(L-R)^{2}} .
$$

However, the envelope detector in a standard AM radio expects to see simply the

FIG. 2-QUADRATURE SIGNALS are not directly compatible with the detectors used in AM radios. Therefore, they must be converted into signals that will not produce distortion.
the carrier and the left- and right-channel audio, or $1+\mathrm{L}+\mathrm{R}$. That difference or error is the cause of the distortion or incompatibility problem.

Motorola found, however, that they
could eliminate that error by multiplying each carrier axis by the cosine of the angle that resulted from the addition of the $\mathrm{L}+\mathrm{R}$ and $\mathrm{L}-\mathrm{R}$ signals. Figure 2-b shows that when that is done, the result is the $1+\mathrm{L}+\mathrm{R}$ that we want-the standard AM radio sees this signal as the same signal received from a monaural AM broadcast. Thus we have complete compatibility.

The C-QUAM system adds a $25-\mathrm{Hz}$ pilot tone to the $\mathrm{L}-\mathrm{R}$ information at 4% modulation that serves several purposes. It signifies that a stereo transmission is present; it permits decoding of the $\mathrm{L}-\mathrm{R}$ signal, and it aids in control of monostereo switching.

The MC13020P

The MCl3020P decoder IC is housed in a 20 -pin, standard dual in-line package, or DIP. A block diagram of the IC is shown in Fig. 3. The associated circuitry needed to build a complete decoder is made up of inexpensive components, and, in most cases, no coils or adjustments are necessary. A schematic of the decoder circuit is shown in Fig. 4. The schematic does not show the exact connection of the C-QUAM decoder circuit to the radio to be converted, or an exact external-oscillator circuit. But we'll give details later.

Taking an overall look at the block diagram of the decoder IC (Fig. 3), we see that the decoder takes the output of the AM IF amplifier, decodes the C-QUAM signal, and provides left- and right-channel audio outputs. In the absence of a good stereo signal, it will produce an undegraded monaural output from both channels.

FIG. 3-A BLOCK DIAGRAM of the MC13020 AM-stereo decoder IC.

FIG. 4-THE SCHEMATIC OF THE decoder shown here does not show the VCO circuit.

The first step in decoding the stereo information is to convert C-QUAM to QUAM. That conversion is accomplished by comparing the outputs of the envelope detector and the $I(L+R)$ detector in the error detector. Let's say, for example, that the incoming signal is monaural. Then it consists only of $L+R$ information, and the envelope detector and I detector see the same signal. Therefore the error detector does not produce an error signal. However, when the incoming signal is stereo, there will be an error signal produced. That's because the envelope detector sees the same signal as it did beforethe sum of the $1+\mathrm{L}+\mathrm{R}$ and $\mathrm{L}-\mathrm{R}$ sig-nals-because it is not sensitive to the phase modulation. But the I detectorbecause it is sensitive to phase modula-tion-sees only the $1+\mathrm{L}+\mathrm{R}$ information. When both signals are sent to the error detector, a $1 / \cos \theta$ correction factor is produced.

In the variable-gain block, the incoming C-QUAM signal is multiplied by that $1 / \cos \theta$ factor. The resulting product is a conventional quadrature or QUAM sig-nal-not the C-QUAM that is compatible with standard AM-radio envelope detectors. It can be detected (synchronously) by conventional means.

The process to detect or demodulate the conventional quadrature signal involves first deriving a reference phase from the transmitted signal. That's the purpose of the phase-locked-loop (PLL) that we'll now describe. The phase detector is a product detector-its output is equal to the product of the two input signal voltages (in this case, a reference carrier from the VCO and the QUAM signal from the variable-gain block). If the two signals are
of the same frequency and 90° out of phase, the DC output of the detector will be zero. That DC output of the phase detector is fed back to the VCO as an error signal. Thus, the frequency of the VCO "zeros in" and locks on the input carrier frequency and we have our phase reference to the I and Q demodulators.
The internal VCO operates at eight times the IF input frequency. That ensures that the VCO's frequency is outside the AM band, even if the receiver's IF is 262 kHz . (Typically, a $450-\mathrm{kHz}$ IF is used with synthesized front ends. But the IF of many auto radios-even if synthesizedis 262.5 kHz .) A $450-\mathrm{kHz}$ IF places the VCO at 3.6 MHz , so you can use an economic ceramic resonator instead of a crystal. (See the Parts List.) But, as we mentioned before, the oscillator configuration will be discussed later in the text.

In the PLL filter at pin 19, C10 is the primary factor setting a loop corner frequency of $8-10 \mathrm{~Hz}$. An internally controlled fast pull-in is provided. (Pull-in time is the time required for achieving synchronization in a phase-locked loop.) Resistor R6 slightly overdamps the control loop, and Cll prevents high-frequency instability. The value of Cl 10 can be increased to $68 \mu \mathrm{~F}$ to lower the filter corner frequency - that may be necessary to accommodate synthesized receivers. It may also be necessary if the filter affects the $25-\mathrm{Hz}$ pilot signal (which must be 0.5 to 0.7 volts P-P at pin 14.). Resistor R6 may also affect the pilot amplitude, and can be decreased slightly if it's necessary to increase the pilot voltage to the required level.

The level detector senses carrier level and operates on the Q AGC block to
provide a constant amplitude of the $25-\mathrm{Hz}$ pilot signal at pin 11. It also sends information on signal strength to the pilot decoder.
The Q AGC output drives a low-pass filter, made up of a 400 -ohm internal resistor, C18, and R15. From that point, an active filter (made up of both internal and external components) is coupled to the pilot decoder, pin 14, and another lowpass filter is connected to the co-channel input, pin 12.

Stereo/mono switching

A 50% reduction in the level of the 25 Hz pilot signal sent to the pilot-decode circuit will cause the system to go to monaural. A signal at a selected level to the cochannel input will also cause the system to go into its monaural mode.
That co-channel input signal contains any low-frequency beat notes caused by interference from a source very close in frequency to the desired signal. The level of the input that will cause the pilot-decode circuit to go into monaural can be adjusted by changing R11. The values that are shown in the schematic set the "trip" level at about 7% modulation.

The pilot decoder has two modes of operation. On a strong signal, the decoder will switch to stereo after it sees seven consecutive cycles of the $25-\mathrm{Hz}$ pilot waveform. When conditions are bad, pilot decoder detects the interference and waits until it sees thirty-seven consecutive cycles of the $25-\mathrm{Hz}$ pilot (that takes about 1.5 seconds) before it goes into the stereo mode. (In a frequency-synthesized radio, the logic that mutes the audio during tuning can be connected to pin 9 of the decoder to hold that pin low until the synthesizer and decoder have locked onto a new signal.) When pin 9 is held low, the decoder is held in its monaural mode and switches to the short count.

If no pilot is detected for seven consecutive counts, it is assumed the incoming signal is a monaural station and the decoder is switched to the long count (37 consecutive cycles of pilot). That reduces the possibility that noise or signal-level fluctuations will cause stereo triggering. The decoder will also switch to the long count if the PLL is out of lock, or if interference is detected by the co-channel detector before seven cycles are counted. (Each disturbance will reset the counter to zero.) The level detector will keep the decoder from going into stereo if the IF input level drops 10 dB , but will not affect the pilot counter.

Once the decoder has entered the stereo mode, it will switch instantly back to monaural if either the lock detector at pin 10 goes low, or if the carrier level drops below the preset threshold. Seven consecutive counts of no pilot also will cause the switch to monaural.

In stereo mode, the co-channel input is disabled. Then, co-channel or other noise is detected by negative excursions of the I
detector. When those excursions reach a level caused by about 20% negative modulation of the $\mathrm{L}-\mathrm{R}$ signals, the lock detector switches the system to monaural, even though the PLL may still be locked. Here, the higher tolerance to co-channel and other interference prevents chattering in and out of stereo because of a marginal signal or high noise-levels (such as during a thunderstorm). If you wish to decrease the effectiveness of the interference sensing (to keep the decoder in its stereo mode in the presence of some narrow spike type of interference) the $2.2 \mu \mathrm{~F}$ capacitor, $\mathrm{C17}$, may be increased to as much as $47 \mu \mathrm{~F}$.

When all inputs to the pilot-decode block are correct, and the appropriate (long or short) count is complete, the switch block is enabled. That block turns on the stereo-indicating LED and passes the $\mathrm{L}-\mathrm{R}$ information to the matrix block, which outputs stereo audio signals.

Selecting a radio

Not every AM radio can be converted to receive broadcasts in stereo. But if you are careful when you examine the radio's capabilities, the conversion should go smoothly. Since there are literally hundreds of different radio designs on the market, we can't discuss the details of converting a particular radio. But we can give you some general pointers:

1. Old vacuum-tube radios are unacceptable. You'll undoubtedly have problems because of the high voltages and temperatures involved.
2. Cheap pocket radios, clock radios, small table radios, and the like should not be used in most cases. They typically have narrow bandwidths, poor sensitivity, and self-generated phase and frequency modulations that can seriously degrade channel separation and increase distortion and noise. (The C-QUAM system uses phaserelated information, so the decoder is sensitive to phase variations or modulation.)
3. Manually tuned radios, whether variable-capacitor or variable-inductor types, may cause audible microphonics when in stereo mode. (Microphonics are electrical noise signals caused by mechanical disturbances of circuit elements.) Radios with self-contained speakers may be subject to microphonic problems because of the speaker vibrations. Those vibrations may generate phase modulation and the associated problems of poor separation, distortion, and noise.
4. The local oscillator must be stable and produce a reasonably clean sinewave. An unstable oscillator or a severely distorted waveform may cause a fluttering or warbling in the audio in the stereo mode. Disturbances of the front end and local oscillator introduce phase noise or ringing.
5. Radios with synthesizer front ends or logic-controlled varactor tuning are best adapted to AM stereo because of the more precise, automatic tuning, and bet-
ter immunity to tuning disturbances. However, those types of receivers are not guaranteed to be trouble free. Phase modulation can originate from the PLL comparison frequency and may appear as an audible tone. Extra filtering may be needed on the control voltages from the logic circuits.
6. The AGC system of the radio should be checked to determine that it is effective enough to control the system gain to provide a generally constant IF input to the decoder from all stations. The AGC should also be slow enough in its response so that distortion is not introduced in the $25-\mathrm{Hz}$ pilot-tone area. In some radios which use an IC for the AM tuner section, it is not possible to gain access to the AGC'd signals. It is important to test for AGC response after all AGC'd stages.
7. A problem with AM tuners using an IC is an IF output voltage that is too low-often only a few millivolts. In this case, a simple, one-transistor amplifier stage must be added to provide the needed $200-350-\mathrm{mV}$ RMS signal to the decoder.
8. A major advantage is a radio with a tuned RF amplifier at the front end. The increased sensitivity and selectivity aid in stereo reception and stability.
9. The IF bandwidth should be at least 5 kHz and reasonably flat. The bandwidth

FIG. 5-HERE IS A FULL-SIZE foil diagram of the single-sided decoder board.
of AM radios can vary from 2 kHz to more than 10 kHz . The wider the bandwidth, the better the performance and audio quality. (The fact that so many radios have narrow bandwidth has prompted radio stations to pre-emphasize the upper audio frequencies-anywhere from 2 kHz on up-to improve sound quality. Such preemphasis will be reduced in the future as AM stereo encourages better receiver designs.

You can see that determining whether a particular radio is suitable for conversion to AM stereo is really the more difficult part of the conversion process. Once the radio has satisfied (or has been modified

FIG. 6-THE OSCILLATOR CIRCUIT shown here needs an input IF of 450 kHz .
to satisfy) all the requirements, the only remaining need is to find a suitable DCvoltage source in the radio to power the decoder circuit. The source should be $11-30$ volts when using the on-board regulator (IC2). Or it should be between 6 and 12 volts if the on-board regulator is not used. The regulator provides about 8.2 volts to the IC, and its use is recommended. The source must be able to deliver up to 40 mA continuously.

Constructing the decoder assembly

Figure 4 shows the complete schematic of the AM stereo decoder circuit and Fig.

FIG. 7-THE PARTS-PLACEMENT diagram shown here corresponds to the VCO circuit of Fig. 6. Note that C20 is mounted on the foil side of the board.

5 shows a full-size foil pattern for a singlesided printed-circuit board. Before we talk about parts-placement, though, we have to select an oscillator circuit. We will discuss three.

The requirements of the VCO circuit design are not terribly critical-it must provide a one-volt P-P clean sinewave at 8 times the IF frequency to pin 14 of the MCl 3020 P . One circuit that we can use is shown in Fig. 6. The corresponding partsplacement diagram for the decoder is shown in Fig. 7.

Of the three designs we'll discuss, the ceramic oscillator with its matched NPO (temperature-compensated) capacitor is preferred for its stability and simplicity. Both the ceramic resonator (RES1) and its matched (nominally 50 pF) capacitor are available from the source indicated in the parts list.

A quartz crystal can be used instead of RES1, but that will result in an extremely narrow pull-in range-only suitable for stable, accurate digital front ends. The

FIG. 8-THIS VCO CIRCUIT can be used if you need to broaden the tuning area to pull the resonator into lock at the required frequency. (Manually tuned radios may require that.)
ceramic resonator permits a much broader pull-in range, but it does have two drawbacks. The available resonator oscillates at 3.6 MHz -that requires a $450-\mathrm{kHz}$ IF input to the decoder. Radios with a 455kHz IF will have to be re-aligned. The second drawback concerns manually tuned radios. Tuning to the station's center frequency is quite critical. (That's not likely to be a problem with synthesized tuners.) To broaden the tuning area, R7 is added to lower the Q of the VCO. Capacitor C 12 provides a DC block.

If greater broadening is needed, $\mathrm{L1}$ and R17 may be added, and C13 changed, as shown in Fig. 8. (The corresponding parts-placement diagram is shown in Fig. 9.) That aids the circuit in pulling the resonator into lock at the required frequency. If L1 and R17 are not used, each must be replaced with a jumper wire as shown.

If your radio does not readily tolerate re-alignment, or if it has an IF of 260 or $262.5-\mathrm{kHz}$, or if you prefer not to attempt re-alignment, an alternative VCO, using a tunable L-C oscillator circuit, is shown in Fig. 10. It replaces the ceramic-resonator circuit and is very stable. The coil must be tuned so that the oscillator frequency is 8 times the radio's IF frequency. The circuit shown accommodates the $260-262.5-\mathrm{kHz}$ IF range. Coil L2 is an adjustable RF coil made up of 60 turns of No. 36 enamelled wire tightly wound on a $1 / 8$-inch-diameter form with a No. 2 ferrite core, a pot core (ferrite shield) and a shield can.

FIG. 9-THIS PARTS-PLACEMENT diagram corresponds to the VCO circuit shown in Fig. 8. Capacitor C20 is the only component mounted on the board's foil side.

PARTS LIST

All resistors $1 / 4 \mathrm{~W}, 5 \%$, carbon film
R1- 1300 ohms
R2, R3- 100 ohms
R4- 330 ohms
R5- 10 ohms
R6- 150 ohms
R7-2000 ohms
R8-220,000 ohms
R9, R16-100,000 ohms
R10- 910 ohms
R11-2700 ohms
R12- 5600 ohms
R13-1600 ohms
R14-430 ohms
R15- 7500 ohms
R17- 1500 ohms
R18-240 ohms
Capacitors
C1,C8,C9-1 $\mu \mathrm{F}, 10$ Volts, electrolytic
C2,C3,C4,C11- $0.0033 \mu \mathrm{~F}$, ceramic disc, 25-50 volts
C5- $0.001 \mu \mathrm{~F}$ ceramic disc, $25-50$ volts
C6- $10 \mu \mathrm{~F}, 10$ volts, electrolytic
$\mathrm{C} 7, \mathrm{C} 17-2.2 \mu \mathrm{~F}, 10$ volts, tantalum
C10- $-33 \mu \mathrm{~F}, 10$ volts, electrolytic
C12,C19,C25-0.01 $\mu \mathrm{F}$ ceramic disc, 25-50 volts
C13-NPO. See Text and Figs. 6, 8, and 10
C14,C15- $0.47 \mu \mathrm{~F}, 10$ volts, tantalum
C16,C18- $-4.7 \mu \mathrm{~F}, 10$ volts, tantalum
C20,C21,C24-0.1 $\mu \mathrm{F}$ ceramic disc or monolythic
C22-100 $\mu \mathrm{F}, 35$ volts, electrolytic
C23-see text and Fig. 10
Semiconductors and other components
IC1-MC13020P C-QUAM decoder (Motorola)
IC2-LM317LZ Z adjustable regulator
LED1-standard red LED, 20 mA
L1- $120 \mu \mathrm{H}$ choke
L2-55 $\mu \mathrm{H}$ coil: 60 turns of \#36 enamelled wire tightly wound on $1 / 8$-inch diameter form with No. 2 ferrite core and shield can.
RES1-Ceramic resonator, Murata CSA2.60MT7 with matching capacitor (C13), Murata CSC500K7
The following are available from Circuit Specialists, Box 3047, Scottsdale, AZ 85257: Complete kit, including PC board and all parts (including parts for the VCO circuit as in Fig. 6 only), \$24.95; Circuit board only, $\$ 4.95$; Ceramic resonator RES1 with matching NPO capacitor (as in Fig. 6) only, \$3; MC1320P decoder IC, $\$ 3.50$. All prices include postage inside the US.

You can use the circuit in Fig. 10 (it's parts-placement is shown in Fig. 11) with an IF of 450 or 455 kHz by making C13 39 pF NPO and C23 10 pF NPO, and adjusting L2 so that the oscillator's center frequency is eight times the input IF.

Except, perhaps, for some of the oscillator parts, the components required for the decoder circuit are common parts. We recommend that you use tantalum capacitors for the polarized capacitors in the filter circuits at IC pins 10-14. They have

FIG. 10-THIS VCO CIRCUIT can be used to replace the ceramic-resonator circuit if your radio has an IF of $\mathbf{2 6 0}$ or $\mathbf{2 6 2 . 5} \mathbf{~ k H z}$. You can also use it with an IF of 450 or 455 kHz if you change the value of C13.
better tolerance and small size. But regular electrolytics, if accurate, can be used with no sacrifice of performance. Nonpolarized capacitors may be ceramic-disc types unless otherwise specified in the parts list. The $0.1-\mu \mathrm{F}$ capacitor, C20shown in Fig. 4 connected from ICl pin 6 to ground-should be soldered on the circuit side of the PC board under the IC from pin $6\left(\mathrm{~V}_{\mathrm{CC}}\right)$ to pin 16 (ground); use short leads when installing that unit. Note that there is intentionally no provision for this capacitor in the board layout.

Converting the radio

The input signal to the decoder must be at least 160 mV RMS for stereo. But for quiet, clean reception, it should be $200-350 \mathrm{mV}$. That is a typical range for most AM radios. In the radio, the stereo decoder goes where the detector would normally go-after the last IF stage before the detector diode. The radio's detector circuit may be disconnected by removing the diode or disconnecting one lead. In some radios, AGC voltages are obtained from the detector circuit and, in that case, the detector should be left connected. In most instances it won't interfere with the operation of the decoder. In any case, the audio output from the radio's detector must be disconnected, to avoid conflict with the two audio channels coming from the MCl 3020 P .

The decoder assembly may be mounted in any convenient place, but try to keep it

*SEE TEXT
FIG. 11-THE PARTS-PLACEMENT diagram shown here corresponds to the VCO circuit of Fig. 10.
away from major heat sources such as a power transformer, output transistors, and heat sinks.

If the interconnecting wires are more than a couple of inches in length, or if they will pass near power-supply components or wires, then you should use shielded cable. Connect the cable shields to ground at one end only. The ground return wire from the decoder assembly should be connected to the radio's ground bus at the radio's IF output or detector circuit. To avoid ground loops, this should be the only common ground connection.

If the receiver has a high IF output (over 350 mV RMS) a series resistor can be added to drop the voltage to the desired level of $200-350 \mathrm{mV}$ RMS at pin 3, the decoder input. The input impedance of the decoder is about 27 kilohms.

Pin 9 of the IC is the forced mono control pin. Grounding that pin locks the decoder in its monaural mode. For automatic mono/stereo switching, pin 9 can be pulled up with a 100 -kilohm resistor to the 8 -volt supply (as shown in the schematic), or it can be connected to pin 10. (That permits the most rapid re-acquisition of stereo after retuning.) If you look closely at the parts-placement diagrams, you'll notice that, although the jumper is not shown, pads are provided on the board so that you can easily tie pin 9 to pin 10. You could also bring pin 9 out to a switch and manually force the decoder to its monaural mode by switching pin 9 to ground. If that is the case, the 100 K resistor must be added. But be sure to remember: Do not add the resistor if you jumper pins 9 and 10.

The left and right audio outputs are "tuner-level" signals ($100-200 \mathrm{mV}$ RMS) and can be connected directly to the tuner or auxiliary inputs of a stereo amplifier. If the conversion is in an AM/ FM receiver, one that has its own stereo amplifier, the decoder outputs should be connected through the band switch. Capacitors C 8 and C 9 will provide the necessary AC coupling to the audio circuits.

Troubleshooting

If the decoder will not go into the stereo mode even with a strong signal, then you should troubleshoot the circuit as we'll describe. Of course, before you start troubleshooting, you have to know that the local radio station is transmitting Motorola C-QUAM stereo-feel free to call the station to be sure.
When you're certain that a C-QUAM signal is being received, (we'll assume that you've checked that the power supply is working correctly and that 8 volts DC is supplied to pin 6) then, using an oscilloscope, look at the following signals:

1. Pin 3-The input signal. The signal envelope (and that at the IF output of the receiver) should show modulation at the top and bottom edges symmetrically. The average amplitude must be 1 volt peak-to-peak, ± 0.4 volt.

WHERE TO LISTEN

As we went to press, these stations (listed alphabetically by city) were broadcasting C-QUAM stereo, with almost 50 orders on backlog. (Those stations wished to remain confidential.)

KRZY	1450	Albuquerque, NM	CKNW	980	New Westminster, BC
WSAN	1470	Allentown, PA	KXXY	1340	Oklahoma City, OK
WCHL	1360	Chapel Hill, NC	CJSB	540	Ottawa, ONT
WAIT	820	Chicago, IL	KGW	620	Portland, OR
WFAA	570	Dallas, TX	CJCI	620	Prince George, BC
WJR	760	Detroit, MI	WHWH	1350	Princeton, NJ
KQWB	1550	Fargo, ND	KIPN	1350	Pueblo, CO
WKQT	1010	Garyville, LA	KKLS	920	Rapid City, SD
WGSW	1350	Greenwood, SC	KKYX	680	San Antonio, TX
CKOC	1150	Hamilton, ONT	KFMB	760	San Diego, CA
WIRE	1430	Indianapolis, IN	KYA	1260	San Fransisco, CA
WNDE	1260	Indianapolis, IN	KRDZ	1230	Steam Boat Springs, CO
CKOV	630	Kelowna, BC	KJOY	1280	Stockton, CA
WITL	1010	Lansing, MI	CFRB	1010	Toronto, ONT
CFPL	980	London, ONT	KRMG	740	Tulsa, OK
KFI	640	Los Angeles, CA	CJVB	1470	Vancouver, BC
KZLA	1540	Los Angeles, CA	CKWX	1130	Vancouver, BC
WISM	1480	Madison, WI	CKLW	800	Windsor, ONT
WSM	650	Nashville, TN			

2. Pin 17-The VCO input. The oscillator input should be a sinewave of about 1 -volt P-P at 8 times the input IF.
3. Pins 7 and 8 -The left and right audio outputs. These signals should typically be about 200 mV P-P, centered on a DC level of about 1 volt.
4. Pin 14-Pilot tone. You should see a $25-\mathrm{Hz}$ sinewave that is steady and $0.5-0.8$ volts P-P. The amplitude can be increased, if necessary, by decreasing the value of R12 (but to no less than 1.8 K). The pilot signal will be present, of course, only if the radio is properly tured to a station transmitting C QUAM stereo.
5. Pin $1-L+R$ signal. This signal looks like the audio signals on pin 7 and 8 but it is centered on a DC level of about 6 volts.
6. Pin $20-L-R$ signal. This should appear about the same as $L+R$ signal. (If you observe closely, you should also see the $25-\mathrm{Hz}$ pilot tone as a low-amplitude component of the complex waveform.)
7. Pin $10-\mathrm{DC}$ lock voltage. The voltage should be 4 volts in lock, 0 volt out of lock. If it's out of lock, the VCO is not at 8 times the input IF. Adjust the VCO or re-align the radio's IF.
8. Pin 9-forced mono. If wired to pin 10, it must have the same voltage condition as pin 10 . If not wired to pin 10, pin 9 must have +4 V DC or higher via a 100 k pull-up resistor (R16) to the 8 V supply. If the voltage at pin 9 is at or near 0 V DC, the decoder is held in monaural mode.

If all the above conditions are satisfied, the decoder will switch into the stereo mode. Failure at this point indicates a workmanship problem, defective component, a fault in the receiver system, or an incoming signal that is not correct for CQUAM stereo detection.

Proven conversions

In preparation of this article, three radios were converted in our lab. The first was an AM (only) portable radio, a Realistic (Radio Shack) model $12-656 \mathrm{~A}$. (It is not listed in Radio Shack's latest catalog.) That radio was chosen because it has an FET-tuned RF amplifier in front, no ceramic filters, (they usually narrow the bandwidth), three tuned IF stages, and a substantial AGC system. Our testing showed that its $3-\mathrm{dB}$ bandwidth was 12 kHz with a very flat response. One AGC voltage is developed from the detector circuit, so the detector was left connected as is. The IF was re-aligned to 450 kHz . The speaker and battery holder were removed to make room for the decoder circuit and a complete 4 -watt-per-channel stereo amplifier with volume, balance, bass, and treble controls. The radio's original audio section was disconnected. The radio lent itself readily to the conversion with only one problem. As previously discussed, manually tuned radios often prove to be microphonic. The 12-656A was no exception. The main culprit was the oscillator coil. Filling the coil assembly with beeswax to stop vibration greatly improved it. The tuning capacitor also was sensitive, but no attempt was made to suppress it because of the possibility of damage. Even so, at this point it took a substantial rap on the cabinet to get a little "ping" sound. The radio was connected to a pair of Radio Shack's Minimus-3.5 speakers that presented a full, clean stereo sound with both laboratory equipment as the C-QUAM signal source and a commercial radio station in Chicago.

The second radio converted was a Sears model 564.50800 , a car radio with digitally controlled varactor tuning, FM stereo, and an 8 -track tape player. The unit presented a different challenge because of its compact assembly and complexity. The selected frequency is digitally discontinued on page 102

the logic analyzer can best be thought of as the digital equivalent to the (analog) oscilloscope. However, unlike the oscilloscope-which displays events as they happen-the logic analyzer samples digital signals and stores them as logic-level 1's and 0's so they can be reviewed later. Because of that fundamental difference, the operation of a logic analyzer may, at first glance, appear intimidating.

In order to dispel that feeling, we'll discuss the basic operation of logic analyzers and take a close look at a relatively low-cost (\$2075/\$2475) unit: the model LA-1020/25 (manufactured by B\&K Precision 6460 W. Cortland, Chicago, IL 60635). We'll also build a simple, singleIC logic analyzer. Although limited in its capabilities, it can be used to demonstrate some of the logic-analyzer techniques we'll describe.

Applications of logic analyzers

Although logic analyzers can be used to monitor any logic circuit, they are mainly used on microprocessor-oriented circuits, usually to monitor the logic states of the address bus. That way, you can follow the execution of the program steps in a program.

That's helpful because a program is rarely executed in a straight-line manner. Instead, it will frequently branch off or jump from one address to another at different parts of the program. That action is analogous to a hobbyist on his way home from work. He will not always travel in a

The logic analyzer is a not-
too-well-understood test
instrument. We'll try to make
you more familiar with it by
taking an in-depth look at one.

KENNETH PIGGOT

straight-line manner. Instead he may stop at the computer store, parts shop, etc.

In the real world we can observe the path taken by the hobbyist simply by looking at him. However, in the world of the microprocessor, our senses fail us and we must rely on instruments-like the logic analyzer that uses techniques such as address-state analysis-to see what is happening.

When the address bus is monitored by a B\&K Precision logic analyzer during each instruction-fetch cycle, 250 steps of the processor's program sequence will be stored in its memory. By using various trigger modes (we'll discuss those later), you can begin the storage of program steps at any selected point of the program's execution.

The B\&K Precision models LAIO20 and LA1025 logic analyzers feature many of the capabilities of larger, more expensive machines. (The two models are identical except for the inclusion of signatureanalysis capability in the LAIO25.) The

LA1020 allows you to monitor and store 250 16-bit TTL-level data samples. In a typical microprocessor system, you would monitor the address, data, and control buses.

To hook the analyzer up to the system under test, two data pods, like the one shown in Fig. 1, are used. Each data pod or probe samples eight TTL-level data lines, one Qualifier line, and one clock line. The qualifier and clock lines will be explained in the "Triggering" section. Each data pod also contains the circuitry to terminate the sampling leads and to drive the connecting ribbon cable between the data pod and the main unit. The logic analyzer's MODE switch can be turned to the POD ACTIVITY position. When in that position, each data pod acts as an 8 -bit logic probe with the display

FIG. 1-THE LP1 DATA POD or probe that is used with the LA1020/25. Each pod monitors eight bits of data, a qualifier line, and a clock line.

This will be coming to you when you subscribe to Radio-Electronics:

- HELPFUL CONSTRUCTION ARTICLES Test Equipment Hi-Fi Accessories Telephone Accessories Music Synthesizers Computer Equipment Automotive Equipment Intruder Alarms Home \& Car Video Accessories
- NEWS ON NEW

TECHNOLOGY
Computers Microprocessors Satelifte TV
Teletext Automotive Electronics Speech Synthesizers IC Applications

- FASCINATING
"HOW TO DO IT"
ARTICLES
Build Your Own Projects
Make Your Own PC Boards Wiring Techniques Soldering and Desoldering Design and Prototyping

Portable Bujars Inside the new 767 COCXPF

 Buill an CGTIIE ANHEXNXA for your vif recelver Backt-to-sthool series POUIT: AIPHITIIRAS
Inexpensive and versatile 2 DUIH CIREUTIS you can buiti

PLUS:

\star vimanes \star many crine

Radio-Electronics covers all aspects of the fast moving electronics field ... featuring COMPUTERS • VIDEO • STEREO TECHNOLOGY • SERVICE COMMUNICATIONS • PROJECTS Get it all!

- HOW YOU AND THE COMPUTER

CAN BE FRIENDS
Getting Started Programs, Circuit Désign, Games A/D-D/A Interfacing Peripheral Equipment

- NEW AUDIO DIMENSIONS FOR YOUR PLEASURE Noise-Reduction Devices How to Connect that Extra Add-On Hi-Fi Accessories New Technology
- TV WONDERS FOR YOUR FUTURE

Latest Receivers and Circuits
The Home Entertainment Center
Projection TV Today Satellite TV Receivers Jack Darr's Monthly Service Clinic Service Problems and Solutions

- AND you also get these regular MONTHLY FEATURES:
- LOOKING AHEAD by Dave Lachenbruch
- HOBBY CORNER by "Doc" Savage
- STATE-OF-SOLID-STATE by Bob Scott
- WHATS NEWS, new products, stereo news
- VIDEOGAMES, new products, game reviews
- and NEW IDEAS, STEREO PRODUCTS, NEW COMPUTER PRODUCTS FOR HOME/JOB and MUCH MORE!
 Name

[^4]Address \qquad
City State \qquad Zip Code

＂I built this 16－bit computer and saved money．Learned a lot，too：＂

Save now by building the Heathkit H－100 yourself．Save later because your computer investment won＇t become obsolete for many years to come．

Save by building it yourself．You can save hundreds of dollars over assembled prices when you choose the new H－100 16－Bit／8－Bit Computer Kit－money you can use to buy the peripherals and software of your choice．

H－100 SERIES COMPUTER SPECIFICATIONS：	
USER MEMORY：	DIAGNOSTICS： Memory selfotest
MICROPROCESSORS： 16－bit： 8088 8－bit： 8085	Memory self－test on power－up
	AVAILABLE SOFTWARE： Z－DOS（MS－DOS）
DISK STORAGE：	CP／M－85＋ Z－BASIC Language
Built－in standard 5．25＂disk drive，	Microsoft BASIC
320K bytes／disk	Multiplan
KEYBOARD：	WordStar
Typewriter－style，	MailMerge
95 keys， 13	Data Base
function keys，	Manager
18－key numeric pad	Most
GRAPHICS： Always in graphics mode． 640h／225v resolution； up to eight colors are available	standard
	8－bit CP／M
	Software
COMMUNICATIONS：	
Two RS－232C Serial	
Interface Ports and	
one parallel port	
＊128K bytes standard． ＊＊Optional．	

DIAGNOSTICS：
Memory self－test
power－up
Z－DOS（MS－DOS）
CP／M－85＋
Z－BASIC Language
Microsoft BASIC
SuperCalc
WordStar
MailMerge
Data Base
function keys， 18－key numeric pad GRAPHICS： $640 \mathrm{~h} / 225 \mathrm{v}$ resolution： up to eight colors are available＊＊

MMUNICATIONS：
Two RS－232C Serial Interface Ports and
＋上เ上ม2土มง
CP－217R4

The $\mathrm{H}-100$ is easy to build－the step－by－step Heathkit manual shows you how．And every step of the way，you have our pledge－＂We won＇t let you fail．＂Help is as close as your phone，or the nearest Heathkit Electronic Center． $\bar{\ddagger}$
And what better way to learn state－of－the－art computing techniques than to build the world＇s only 16 －bit／8－bit computer kit？To run today＇s higher－speed，higher－per－ formance 16－bit software，you need an H－100．It makes a big difference by processing more data faster．
Dual microprocessors for power and compatibility．The $\mathrm{H}-100$ handles both high－performance 16 －bit software and most current Heath／Zenith 8－bit software．
Want room to grow？The H－100＇s standard 128 K byte Random Access Memory complement can be expanded to 768 K bytes－compared to a 64 K standard for many desktop computers．
And the industry－standard S－100 card slots support memory expansion and additional peripheral devices， increasing future upgradability of the $\mathrm{H}-100$ ．
High－capacity disk storage，too．The H－100＇s 5．25＂floppy disk drive can store 320 K bytes on a single disk．The computer also supports an optional second $5.25^{\prime \prime}$ and external 8＂floppy disk drives．And an optional internal Winchester disk drive will be available soon．

For more information，circle the reader service number below．Better yet，visit your Heathkit Electronic Center for a demonstration！

The H －100 gives me the most for my computer dollar！

FIG. 2-SIMPLIFIED BLOCK DIAGRAM if the LA1020 showing the external inputs and outputs.
indicating 0's, 1's, or P's (pulses), depending on the logic activity on each data line.
As can be seen in the block diagram in Fig. 2, the two 8 -bit sets of data samples from the data pods are routed to the logic analyzer's memory and trigger circuits. As previously mentioned, the LA1020 can store up to 250 16-bit samples in its internal memory. Data sampling can occur at sample rates of up to 20 MHz . (That equates to a minimum time between samples of 50 nanoseconds.)

Triggering

The trigger circuit of the logic analyzer lets you select the starting point for storing data samples. It continuously compares the incoming data bits to a userselected trigger word. That trigger word is selected by throwing each of the 16 threeposition TRIGGER BITS switches on the front panel to either 1,0, or x, where the x stands for "don't care." In the "don't care" position, the incoming data line will satisfy the trigger requirements whether it is a logic 1 or a logic 0 .

The LA1020 also monitors a QUALIFIER line from each of the data pods. That bit is not stored in memory and is only used by the trigger circuit. Each of the qualifier bits has a corresponding switch that operates identically to the TRIGGER BITS switches. The easiest way to describe the purpose of the qualifier lines is to give an example of how they could be used. If you hooked one of the qualifier lines to a control signal such as a microprocessor's READ line, data storage would be triggered only when the READ pin was high (or low, depending on how the qualifier switch was set). If the two qualifier lines are not used, their trigger switches can be set to the "don't care" position and they
will be ignored.
An optional $L P-3$ qualifier pod (seen in Fig. 3) adds 16 more trigger bits to the trigger word. With it, you could monitor a system's data lines while triggering from the address lines that are connected to the qualifier pod. Sixteen three-position switches on the qualifier pod can also be set to a logic 0,1 , or a "don't care" position. That optional expander pod is plugged into a connector on the rear panel of the logic analyzer.
The easiest way to picture the operation of the trigger circuit is as a multi-input AND gate for which the active levels can be user-defined by setting the TRIGGER BITS switches. When the logic levels on the 16 data lines and the qualifier lines being sampled match those set on the trigger bit switches, the memory-storage process will be enabled.

Before the various trigger modes are described, it would be appropriate to examine how the 250 samples are loaded into memory.

FIG. 3-THE LP3 TRIGGER EXPANDER PROBE or qualifier pod adds 16 more trigger bits to the trigger word.

Clocking

Once the trigger circuit enables the storing of data samples, it no longer has any effect on sample loading-the storing
of the data samples occurs in conjunction with the clock circuit.

The clock circuit tells the memory when the incoming data samples are valid. You can select between two external clock lines (one located on each data pod) or an internal clock. If you decide to use the external clock signals, either clock line-and whether the rising or falling edge of the signal on that line is usedcan be selected. It is important to note that the clock as it is referred to here is not necessarily the microprocessor system's clock. It can be any control signal that's used to indicate when the sampled data is valid.

The appropriate control-bus signal for clocking the logic analyzer will vary with the type of data being observed and the particular microprocessor in the system. For example, if you wanted to look at the address lines of a Z80 microprocessor during the instruction-fetch cycle, the clock line would be hooked to the $\overline{\text { READ }}$ line and the clock edge would be set to falling edge. Or, even better, a qualifier line would be connected to the $\overline{\mathrm{Mi}}$ line with the corresponding trigger switch set to logic 0 .

When the internal clock is used, data will be stored at one of eight user-selected sampling rates ranging from 10 MHz (a sample every 100 ns) to 1 Hz . That means it can take a minimum of 24.9 microseconds or a maximum of 249 seconds to fill the logic analyzer's memory.

The internal clock allows you to observe a circuit that has no clock signal available. You could set the logic analyzer to begin storing samples when a particular set of inputs occurs and then store periodic samples over the user-selected period of time. (See Fig. 4.)

FIG. 4-A TTL CIRCUIT THAT can be monitored by a logic analyzer. The trigger-bit switches would be set for the desired logic levels for D0-D4, and for x for D5-D15. The internalclock selector is used to set the sampling rate.

Data storage

Once the trigger word and the clock source have been selected, the machine is simple to use. You simply push the ARM button to activate the trigger circuit. When the data on the incoming lines match the trigger word, the analyzer will begin storing samples in conjunction with the selected clock. During the data-storing process, the TRIGGER LED will light. When all 250 samples have been stored, the trigger LED will go out and the completed LED will light.

Let's consider, however, the real-life situation where the incoming data never matches with the trigger word. That typically occurs when a program locks up in a loop. You can manually initiate storage of the data samples by pushing the TRIGGER button. In that instance, if you are sampling the address lines, the data stored will be the locations of the program instructions then being executed. Also, if you were to encounter an instance where a program halted before 250 samples were stored, you could manually complete the sampling process by pushing the COMplete button. Once the sampling process is complete, you can view the analyzer's stored data.

Data display

The display circuit shown on the block diagram in Fig. 2 lets you observe the stored samples. The LA1020 will display its stored information one word at a time on its LED display when in the display mode. By pushing the + and - TRIGGER switches you can examine, individually, each of the 250 data samples stored in the LA1020's memory. You can select your choice of displaying the memory in a decimal, octal, binary, or hex format by turning the MODE switch to the appropriate position. In addition to the data being displayed, the location of the data word in the logic analyzer's memory is also displayed. The display circuit also supplies the synchronizing and vertical-input signals to allow an oscilloscope to be used as a 16 -word by 16 -sample display. The data displayed on the oscilloscope will scroll as you scroll through the logic analyzer's memory.

There are two additional outputs on the logic-analyzer unit. One is a clock output. When you select an internal clock rate, an output at the same rate is available from a BNC connector on the rear panel. The other output is the event output.

FIG. 5-THE LOGIC ANALYZER can be used as a digital trigger for an oscilloscope. If the selected trigger word is the starting address of the A / D conversion routine, the scope will be triggered every time the conversion is started.

FIG. 6-TRIGGER MODES OF THE LA1025. The basic mode is shown in a; the event-delay mode in b; the clock-delay mode in c, and the trigger-position mode in d.

When the logic analyzer's mode switch is changed to the event position, the logic analyzer acts as a digital trigger for an oscilloscope. Whenever the incoming data sample matches the trigger word as selected on the TRIGGER BIT switches, a pulse that can be used to trigger an oscilloscope will be generated on the EVENT output line.
A typical application would be to troubleshoot the analog input of an erratic $\mathrm{A} /$ D converter. By hooking the data-sampling lines to the address lines and setting the trigger bits to the starting address of the A / D conversion routine, as shown in Fig. 5, the oscilloscope can monitor the stability of the input voltage to the A/D converter.

Trigger modes

The real versatility of the logic analyzer lies in its triggering modes. We have already discussed the basic trigger modethe configuration when the logic analyzer is powered up. As shown in Fig. 6-a, the logic analyzer's trigger circuit monitors the incoming 16 data sampling lines and qualifier bits. When the incoming data samples match the user-selected 16 -bit trigger word, a condition we'll call the trigger event occurs and the storage of data samples on subsequent clock signals begins. In this mode, the first word stored in the logic analyzer's memory will be the trigger word. (If some of the trigger bit switches are set to the x or "don't care"
position, the actual data stored in the corresponding bit position may be either a logic 1 or 0).
The basic trigger scheme can be altered when the mode switch is turned to the stat (status) position. In that position, you can select any combination of eventdelay, clock-delay, or trigger-position modification.

Figure 6-b shows the effect of the event delay, which can probably best be thought of as a loop delay and can be used in the following way: Let's assume that you want to look at a program with a 300 -step loop that is going astray in its tenth pass through the loop. In the basic triggering mode shown in Fig. 6-a, the logic analyzer would trigger and fill its 250 -word memory on the first pass through the loop. Using the event delay you can trigger the logic analyzer on the tenth pass through the loop. To accomplish that, the mODE switch is set to the stat position and, for the example above, the event delay is set to 9 by using the + and - event delay switches. By setting 9 as the event delay, you are instructing the logic analyzer to ignore the first 9 trigger-word matches (events) and to enable the logic analyzer's memory when the tenth trigger event occurs. The event delay can be user selected to any number from 0 (no event delay) to 999. As with the basic triggering mode (Fig. 5-a), the first data sample stored in memory will be the sampled data that matches the triggering requirements.

The previous problem brings to light another problem. The loop length in our example above is 300 program steps and our logic analyzer can only store 250 of those. Let's assume for this example that we want to see only the last 250 program steps. To further complicate the problem, the beginning of the program contains ten program steps that are followed by subroutine "A" (a ten-step subroutine). What's more, that subroutine is followed by twenty-five program steps, a repeat of subroutine " A ," and then by the remainder of the program.

Note that since subroutine "A" executes both from step 11 through step 20 and step 46 through step 55 , we cannot set the trigger word to an address in subroutine "A" to capture the last 250 steps in our loop. That's because subroutine "A" also occurs before the loop's pro-gram-step 50 .

Keep in mind that we have already used our loop delay to trigger on the tenth pass through our loop. The LA1020/25, however, has a trigger mode that allows you to delay the storage of data samples by a preset clock delay. That is shown in Fig. 6-c. For our example above, you would set the TRIGGER bIT switches to the beginning address of our loop and set the clock delay to 50 by using the + and clock delay switches. The result is that after the event delay (Fig. 6-b) is satisfied (it has priority over the clock delay), the unit will not store any samples until the 51st clock pulse occurs. The remaining samples will then be loaded on subsequent clock pulses. In that manner, the clock-delay feature gives you another tool for "zeroing in" on the portion of the program that you want to observe. The clock delay can be set for values from 0 (no clock delay) to a maximum of 999.

The last triggering modification to be discussed is the trigger position (Fig. 6d). With the + and - TRIGGER POSITION switch, you can locate the trigger event anywhere within its 250 word memory. If, for example, 20 was set into the trigger position register and the trigger event occurs, 20 samples prior to the trigger event will be stored in the first 20 words of the logic analyzer's memory. The trigger word will be stored in the 21st position in the logic analyzer's memory and then 229 samples will be stored after the trigger word.

This example, of course, assumes that the clock delay was not set: The triggerposition feature is perhaps the most useful on the logic analyzer. Let us look at an example where you have a program that contains a subroutine where the program is locking up. The trigger word can be set for the starting address of the subroutine (found by manually triggering the unit) and the trigger position set to 125 . (The trigger-position register can be set to any number from 0 to 249.) Now, when the sampling process is completed, you will not only be able to view the trigger word
and the 124 samples after the trigger word, but also the .125 samples immediately preceeding the trigger event. You can then see the data samples that occurred before the entry was made into the subroutine.

As previously mentioned, these three trigger modes can be combined for the desired effect. Although that task may seem overly complicated to perform at first glance, it really becomes easy after a little experience.

An example

As another example, let us assume we are looking at a problem with multiple interrupt routines for the 8080, 8085, or Z80 (mode 0). As there are 8 levels of interrupts possible, the program could go to any one of eight locations, depending on the application. These locations are shown in Table 1.

In order to see which interrupt routine occurs, the address bus would be monitored by the logic analyzer and the trigger bits would be set to 00000000 00 XX X000 (binary A15-A0) where X represents a "don't care" state. That means that the logic analyzer will trigger any time an interrupt occurs. By modifying the trigger position, you can see not only what interrupt occurs but the address of the program steps occurring before the

interrupt. If the interrupt routine were a long one, the clock-delay function could position the start of the sampling process anywhere within the interrupt routine.

Extended bus monitoring

In the case of monitoring a system with extended addressing (more than 16 bits), the LP3 qualifier probe (Fig. 3) is useful. Even though the logic analyzer will only store 16 bits at one time, the extended address bits can be used to trigger the unit with the LP-3 qualifier pod. Then, by knowing the address location of the trigger word, the 16 stored bits would generally be enough to follow the program sequence.

A similar situation occurs when monitoring the data buses. Eight- and six-teen-bit data buses can be monitored without problems. A trade-off must be made, however, when you want to monitor both the address and data bus; let's see what's involved.

With an eight-bit data bus, eight address lines (usually the lower eight bits) can be stored in addition to the eight data lines. The high-order address lines could then be used as part of the trigger word by using the $L P 3$ qualifier pod. Similarly, when monitoring a 16 -bit data bus, the address lines could only be used for triggering. It is important to note that we are confronted with the basic design limitations of a 16 -bit machine-only 16 bits of data can be stored at one time. Two alternatives are possible. One is to run two LA1020/25 units in tandom. The other would be to buy a unit with more than 16 bits of data storage. Generally, though, a unit with 16 bits of data storage is sufficient for most requirements.

A single-IC analyzer

So far we have explored a commercially available logic analyzer. Unfortunately, not everyone can afford more than $\$ 2000$ for such a logic analyzer. Recently, I found myself in the same situation. The B\&K unit that had been loaned to me wasn't available any longer and I didn't have the money to spend for one. Yet, the project I was working on-a stand-alone printer interface card with an on-board Z80 microprocessor-was giving me a rough time. The program just wasn't executing as it should. Fortunately, a circuit that I had recently run across, was adaptable to my needs. Based on that circuit, I was able to design a one-IC "logic analyzer" to perform the function of ad-dress-state analysis.

Obviously, a one-IC logic analyzer will have many limitations. The first limitation with ours is that it will only work on Z80 microprocessors. The second limitation is that the output from the circuit under test has to be fed into 2 parallel ports on a host computer.

Figure 7 shows the typical hookup between the circuit under test and the host computer for address-state analysis. Figure 8 shows an alternative method of displaying the data if you don't have 2 extra parallel ports.

How it works

The circuit (its schematic is shown in Fig. 9) is really quite simple. It causes the microprocessor under test to enter a wait state at the beginning of every instructionfetch cycle. While the microprocessor is in its wait state, the address lines are sampled by the host computer. The host computer then clears the wait signal and the microprocessor completes the instruction cycle.

When the next instruction fetch occurs, the waIt signal again goes low and the whole cycle begins again. A limitation that you should be aware of is that, unlike the B\&K logic analyzer, which samples the circuit in real time (without slowing down the program's execution), this circuit halts the program's execution after each program step. Therefore, it is possi-

FIG. 7-INTERCONNECTION BETWEEN the logic analyzer host system and the test system.
the start of the wait state until the host takes its sample-for the address lines to settle for a stable sample. Nonetheless, it is strongly recommended that the length of the connections between the tested system and the host system be kept as short as possible.

When the program in Table 2 is entered, a "*" is printed as a prompt. You can then press any number between 1 and 9 on the keyboard. That number of pro-gram-step addresses will be displayed on
ble that this circuit could cause some strange occurences in programs that have critical timing loops.

The heart of the circuit is a simple dual D-type flip-flop. When the Z80's instruc-tion-fetch cycle begins and the $\overline{M 1}$ line goes low, the next clock pulse toggles the flip-flop, and the wart line is pulled low via Q1. That transistor functionally acts as an open-collector output. Pin 24, the WAIT line on the Z80, should be connected to a pull-up resistor. To protect any other non-open-collector gates hooked up to the WaIT line, they should be disconnected. Since a wait state occurs each instruction cycle when using this logic analyzer, that shouldn't cause too many difficulties. When a positive-going strobe is sent from the host system, the second flip-flop is toggled and the wait state ends. The $\overline{\mathrm{RE}-}$ $\overline{\text { FRESH }}$ line prevents the wait cycle from repeating until it goes high during the next

FIG. 8-AN ALTERNATE METHOD to display data from the one-IC logic analyzer. The circuit in a will cause an additional data sample to be taken each time S2 is pressed. Three additional BCD-to-decimal decoder/drivers and LED's are needed to display the value of the 16 data bits.
instruction cycle. At the end of this article we'll explore some options to expand the capabilities of this circuit.
The circuit was built on a small piece of

FIG. 9-SCHEMATIC OF THE LOGIC ANALYZER. No on-board buffering is provided because enough time for the data to settle is provided in software. When S1 is closed, the analyzer controls the test system. When open, it has no effect on the test system.
perf board using wire wrap techniques and is shown in Fig. 10. The connection to the host system was made by a 25 -conductor ribbon cable with DB-25 connectors at each end. Connection to the system under test was accomplished by using a 40 -pin clip with standard DIP spacing that attached to the Z80. No buffering was used on the address lines between the system under test and the host system. The software (Table 2) that I used leaves a long enough delay time-from

FIG. 10 -THE ONE-IC LOGIC ANALYZER doesn't look elegant, but it does work! It was built using wire-wrap techniques. Connection to the Z80 test system is by a $40-\mathrm{pin}$ clip.

TABLE 2-LISTING

This is a simple program to display the addresses of instructions as they are executed. When run, the program displays an "*". The user then selects a number between $1-9$ on the keyboard. That number of program steps will then be displayed on the console. If the RETURN key is hit, the system reboots. This program is written in 8080 code for the ASM assembler.

BDOS CONOUT	ORG EQU EQU	$\begin{aligned} & 100 \mathrm{H} \\ & 5 \\ & 2 \end{aligned}$;BDOS ENTRY POINT CONSOLE OUT FUNCTION CODE CONSOLE IN : FUNCTION CODE :LOAD NEW STACK ; POINTER CARRAGE RETURN	IN	05H	SETTLE ;GET UPPER 8 DATA BITS
CONIN	EQU	2		CALL in	$\begin{aligned} & \text { PRTHX } \\ & 06 \mathrm{H} \end{aligned}$	PRINT HEX NUMBER ;GET LOWER 8 DATA
						: BITS
	1XI	SP,200H		CALL MVI	PRTHX E. 20 H	:PRINT HEX NUMBER
PMT:	MVI	E,ODH				: THE CONSOLE
				MVI	C,CONOUT	
	MVI	C,CONOUT		CALL	BDOS	
	CALL	BDOS		POP	D	;GET LOOP COUNT
	MVI	E, ©AH				: BACK
	MVI	C,CONOUT		DCR	D	;DECREMENT LOOP
	CALL	BDOS				; COUNT
	MVI	E,2AH	;PRINT PROMPT	JNZ	LOOP	:LOOP UNTIL OUTPUT
	MVI	C.CONOUT				; IS DONE
	CALL	BDOS		JMP	PMT	;DONE - PROMPT

MY SYSTEM IO PORTS ARE:
STROBE OUT PORT $=\emptyset 3 \mathrm{H}$
STROBE OUT BIT $=02 \mathrm{H}$
LOW ADDRESS INPUT PORT $=06 \mathrm{H}$
HIGH ADDRESS INPUT PORT $=05 \mathrm{H}$
PORTS AND BITS SHOULD BE CHANGED
TO REFLECT YOUR SYSTEM

$\begin{aligned} & \text { DELAY: } \\ & \text { TLOOP: } \end{aligned}$	MVI DCR JNZ RET	C, 10 C TLOOP	;LOAD DELAY ;DECREMENT COUNT :LOOP UNTIL DELAY IS ; OVER ;DONE - RETURN

; PRINT TWO HEX NUMBERS ON CONSOLE

PRTHX:	PUSH CALL	$\begin{aligned} & \text { PSW } \\ & \text { ASCII } \end{aligned}$:SAVE REGISTER OUTPUT ONE CHARACTER
	POP	PSW	GET CHARACTER BACK
ASCli;	JMP	BYPASS	:SKIP ROTATION ;POSITION DIGIT
	RLC		
	RLC		
BYPASS:	ANI	OFH	MASK HIGH FOUR
			; BITS TO ZERO
	CPI	\emptyset AH	CHECK FOR HEX A
	JC	PASS	;NOT THEN SKIP ; NEXT
	ADI	7	; INDEX TO "A"
PASS:	ADI	30 H	; INDEX TO ASCII
	MOV	E, A	:POSITION OUTPUT
	MVI	C,CONOUT	:OUTPUT IT
	CALL	BDOS	
	RET		
	END		

the terminal's CRT. In that way, the execution of the program can be followed. When you want to exit the program, simply press the carriage return.
It's possible that you would like to see all memory accesses by the Z80 in addition to the instruction fetches. The memo-ry-request signal (Z80 pin 19- $\overline{\mathrm{MREQ}}$) and the READ and WRITE signals (pins 21 \& 22) are candidates for triggering signals that could be used in place of the Mi signal to trigger the unit.
If you use a microprocessor other than
the Z 80 , the requirement for the refresh signal can be eliminated by adding an inverting gate from a 74 LS 00 or 74LS04. The input of that gate would be connected from pin 12 of the 74LS74 and the output of the gate would be connected to pin 1 of the 74LS74, eliminating the requirement for the resetting of the logic analyzer via the Z 80 refresh signal. Although I haven't actually tried it, the address latch enable (ALE) of the 8085 or the valid memory address (vMA) of the 6800 should take the place of the $\overline{\mathrm{MI}}$ signal in triggering this
circuit. Caution should be used to insure that any restrictions on the maximum duration of the wait signal should not be exceeded. (The Z80 has no restriction on the maximum duration of the wait signal).
Despite its limitations, this simple logic analyzer enabled me to successfully complete my project and saved me the cost of an expensive logic analyzer. With a little work with the software, many of the features of the commercial logic analyzer we previously discussed could be implemented.

BUTMD TCMIS

Computer Interface

BILL GREEN

Build this interface/buffer and use your IBM typewriter as a low-cost letter-quality computer printer. The 30K buffer can be used with the typewriter or any parallel printer.

Part 2WE have already looked at the theory behind the interface and looked at its features. Now we'll go through the assembly and begin the interface installation.

As we now go through the assembly instructions, be sure that you install parts in their proper locations and double check your work! Make sure all parts are properly oriented or polarized. Solder all leads and clip the leads close to the board. Don't forget that MOS devices are static sensitive-use sockets and follow proper handling procedures to avoid damage.

Follow the parts-placement diagrams shown in Figs. 9 and 10 to help with the assembly. To start, install sockets for (preferably all) the IC's. Note that IC1 and IC2 are MOS devices and should definitely be socketed. The same holds true for IC12 through IC27, which are used in the buffer. Two high-current drivers, $\mathrm{ICl0}$ and ICII, are used only with the Selectric. You might want to install sockets there, anyway-it will make the interface easier to modify in the future.

Next, install the fuse clip and a 20 position right-angle header at SO1. Install the voltage regulator and its heatsink. Then, connect switches S1, S2, and S3. Install D1, all the resistors except R3, and all the capacitors except C 5 .
There are still some components and jumpers to be installed. Which components you now install-and where you install them-depends on what printing device you're going to use. We'll discuss each case in the following paragraphs.

If you will be using a Selectric, install R3 near pin 1 of ICl . (Note that the partsplacement diagram shows two possible locations for R3.) Install jumper JU1 and diodes D2-D4. Next, connect switch

S4, following the parts-placement diagram for the proper pads. (Again, note that there are two possible ways to connect S4.)

For the Electronic typewriter, install R3

FIG. 9-PARTS-PLACEMENT DIAGRAM for the main board. Note that some components depend on what printing device you're going to use.

FIG. 10-PARTS-PLACEMENT DIAGRAM for the memory board, and connections to the main board are shown here.
above IC6 and then install C5. Install JU4, JU5 - JU11, and JU13 (See Figs. 2 and 9). As we mentioned earlier, you may want to install a socket at IC10 and insert a properly jumpered DIP header in the socket. Next connect S4 to the proper pads as indicated for the Electronic in the parts-placement diagram.

If you will use this interface only with a printer, install R3 above IC6. Then install diode D5 and install JU2, JU4, and JU5-JU13 (See Figs. 3 and 9). Here, too, you may want to use a DIP socket and header for those jumper connections. Wire S4, making sure that the wires are connected to the proper set of pads as shown in the parts-placement diagram.

Next we have to decide whether or not
buffer memory will be installed. If you don't want any buffer memory, then install jumper JU3. If you do want the buffer, but need only 8 K or less, then install sockets on the main board for IC12 through IC16, and then install the IC's.

If more than 8 K of buffer memory is to be used, then you need the separate memory board. Install and solder sockets for the IC's on that board. Of course, the main board and the memory board have to be wired together. As you can see from the photo in Fig. 11, ribbon cable helps to keep things neat. The connections from the memory board to the main board near IC15 are about 3 inches long. The other connections that go near IC12 are about 6 inches. As you follow the parts-placement

FIG. 11-SUGGESTED CASE MOUNTING. When the case is closed, the memory board will be on top of the main board, and the components on each board will face the other. Note that a right-angle header was not used at SO1-we used what we had on hand.
diagrams, you'll note that the interconnections near IC16 are tricky. If you arrange the boards as shown in Fig. 11, then you'll note that all the wires cross.

Now, again referring carefully to Figs. 9,10 , and 11 , connect the 34 three-inch and six-inch wires from the main board to the memory board.

The next step is attaching the interface to your computer. You'll need a 3 -foot length of flat ribbon cable and a suitable connector to connect to the parallel port of your computer. The other end will just be stripped, tinned and soldered to the main board at SO2. Referring to the manual for your computer and the pinout of SO2 (as shown in the schematic), attach the cable between the two. If you have a Radio Shack computer (Models III or 4) or an IBM PC, then you don't even have to look at your manual-the proper pin connections are shown in Fig. 12.

Connect a 6 -foot length of No. 22 zip cord to the main board near the fuse clips and install a $5-\mathrm{amp}$ fuse. Now we're ready to install the board(s) in a suitable case. Use No. $4 \times 1 / 4$-inch self-tapping screws to mount the boards. Punch or drill holes for the switches in the front panel of the case, install the switches, and label them. Orient S1 and S3 so that the unused terminal of those toggle switches is up. Punch or cut the rear panel to clear the connection to the header at SO1. Leave plenty of extra room to allow for ventilation.

Connect the free end of the zip-cord wires to a 12 -volt, 2 -amp, wall-mounted transformer. Turn on the POWER switch and measure for 5 volts at the output of IC28. If that voltage is not correct, or if the fuse blows, double check everything. Check carefully for solder bridges and check the polarity of the voltage regulator, diode(s), and electrolytic capacitors.

Installation

Now that assembly is complete and the interface is hooked to your computer, it's time to connect it to your printing device. In the following sections, we'll go through installation for each of the three cases: printer, Selectric, and Electronic. We'll start assuming that the adapter will be used only as a printer buffer along with a standard parallel printer.

Printer installation

This is by far the easiest configuration, which is why we're starting with it. The only thing you have to do here is to make up a custom cable. You need to get a connector that will plug into the parallel input of your printer, a connector to mate with the 20 -pin jumper header at SO1, and some cable to run between the two.

Refer to the manual for your printer and to the schematic in Fig. 3 for the pinouts of your printer's port and SO1. Wire the cable to go between the appropriate pins of the interface and your printer. Then after double checking that your cable is wired correctly, attach the cable to each

FIG. 12-HOOKING UP THE INTERFACE to your computer is straightforward but requires making a custom cable. Shown here are the connections to a TRS-80 and IBM PC.
device. Check everything again to make sure that the connectors are properly polarized (not inserted backwards). Then turn the interface on and power your printer and computer in the usual order, and press reset. Dump some text from the computer to the interface. If you have buffer memory installed, press PRINT. (If no buffer memory is installed, printing should begin immediately.) That's all there is to it! If the interface has been assembled correctly and the cables are correctly connected, the text should be printed correctly on the printer.

Electronic installation

Now we're going to look at how to adapt your Electronic model 50, 60, or 75 typewriter for use as a printer. You're probably worried about what the connection will do to your warranty. IBM Corporation's policy on this (as pertains to warranty and service policies) is to inspect and accept for service each installation on an individual basis. Their interest is primarily to assure that their service personnel will not be subjected to hazardous conditions or voltages. The adapters that this interface requires present no hazards. Contact your IBM field service office for inspection.

Before we get to the "nuts and bolts" of the installation, we should point out that if you do not use care (and some common sense) in the following procedures it is possible that you'll damage your typewri-ter-so be careful. With that in mind, position the typewriter carriage near the center and unplug the power cord until we tell you otherwise.

The first step is to remove the top of the machine; following Fig. 13 will help you. Raise the cover and pivot the paper table up and back. Remove the platen by pressing the release levers on either end of it. Raise the carriage pointer. Using a screwdriver with a long blade, slide the left and right cover-latches forward. These latches are directly below where the platen was.

FIG. 13-REMOVING THE COVER of the IBM Electronic is an easy process.

Remove the cover by lifting it straight up. Then reinstall the platen. Lift the typewriter by the metal frame at the front and pull
forward a few inches. Then tilt it back until it rests on the rear support brackets, as shown in Fig. 14. At the top right side of the assembly is the keyboard-switch plate. There are seven reed switches mounted on this plate. Their designations are shown in Fig. 14.

You will be connecting wires from SO1 on the main board to the reed switches (or, as we'll describe, to the wires leading to the switches).

Cut the wire ties on the wire harness running to the reed switches. Referring to the schematic in Fig. 2, note the pinout of SOl for the Electronic. The odd-numbered pins are the output to the reed switches. (Only one even-number pin, we chose pin 14, is used here.) Spread the wiring harness from the reed switches open to determine what switch each wire goes to. The black wire which loops between one terminal of each reed is ground. At a point an inch or so to the left of $K B M D$, splice the wire from pin 14 of SOI into that black wire. (The KBMD or Key-Board-MoDe reed is what tells the Electronic to print shifted characters.) Following Fig. 3, splice the other wires from SO1 to the other wires from the reeds-pin 1 to reed 1 , pin 3 to reed 2, etc.-until all seven reeds are connected. Solder and tape the splices.

About halfway up and on the left side of the machine is the PFB (Print FeedBack) reed. (See Fig. 15.) Splice the wire from pin 17 of the header at SO1 to the lightcolored wire from this reed. Solder and tape this splice. Rebundle the wire harness from the switch plate using wire ties. Position the flat cable as shown and secure with wire ties. Be sure that the ties do not interfere with the moving parts of the ma-

FIG. 14-BOTTOM VIEW of typewriter assembly showing reed-switch locations.

All resistors $1 / 4$-watt, 5%, unless other-
wise specified
R1,R3- 1000 ohms
R2- 10,000 ohms
R4-220 ohms
Capacitors
C1- $2200 \mu \mathrm{~F}, 25$ volts, electrolytic
C2,C3,C7,C8- $0.1 \mu \mathrm{~F}, 6$ volts, ceramic disc
C4 - $4.7 \mu \mathrm{~F}, 10$ volts, electrolytic
C5-1 $\mu \mathrm{F}, 6$ volts, electrolytic (used only with Electronic)
C6- 1500 pF, 6 volts, ceramic disc

Semiconductors

IC1-2650 microprocessor, (Signetics)
IC2-13941 PROM. (Alpha)
IC3-74LS14 hex inverter
IC4-74LS20 dual 4 -input nano gate
IC5-74LS139 dual 2-to-4 line decoder/ muitiplexer

IC6,IC9-74LS373 octal D-type latch
1C7-74LS279 quad S-R latch
IC8-7400 quad 2-input NAND gate
IC12-74LS154 4-to-16 line decoder/ demultiplexer (for buffer)
IC13-1C27-TMM2016P $2 \mathrm{~K} \times 8$ static RAM (Toshiba) (for buffer)
IC28-LM340T five-volt regulator
D1-1N5400
D5-1N4148 (used only with printer)
F1-5-amp fuse
S1,S3-Switch, SPDT toggle
S2,S4-Switch, SPST, momentary push button
T1-12-volt 2 -amp wall-mounted transformer
Miscellaneous: PC boards, fuse clip, IC sockets, 20 -pin header for SO1, 5 -watt heat sink for IC28, suitable case, wire, connectors and cables for your computer and printer

The following are available from Alpha Electronics, PO Box 1005, Merritt Is., FL. 32952 (305-453-3534). A complete kit of parts-including main PC board, memory PC board, cable, case-for printer conversion (does not include memory IC's): $\$ 129$ plus $\$ 6$ postage; complete kit for Electronic conversion (does not include memory PC board or memory IC's): \$119 plus \$6 postage; $2 \mathrm{~K} \times 8$ static RAM IC's, $\$ 6.50$ each postpaid; 13941 PROM, \$25; memory PC board (PC1832) \$13 postpaid; main PC board, (PC1831), 518 postpaid; ABS plastic case, $\$ 12$. Florida residents please add 5% tax. Canadian orders please add $\$ 2$ per order in addition to U.S. postage. Other countries please add $\$ 6$ per order in addition to U.S. postage.

0000000PS!

Last month, some errors crept into the article: In Fig. 1, the LM340T voltage regulator should have been labled IC28 and R3 should have been labled 1K. In Fig. 4 and the Parts List, IC's 13-27 are TMM2016's. We're sorry for any inconvenience this may have caused you.-ED
chine. Lower the assembly backs to its proper position. Run the flat cable along with the power cord out through the notch in the bottom cover. Remove the platen and lower the top cover into place. Relock the two case latches, reinstall the platen, and pivot the paper tray forward. Lower the carriage pointer and the cover.

Now that that's done, we can try it out. Plug the flat cable into the interface and plug the cable from SO2 into your computer. Turn on the interface (making sure

THAT YOOU CAN DO

JOHN D．LENK

Abstract

Repairing and aligning VCR＇s isn＇t easy，but it is possible to do some of the work yourself if you know how！In this article we＇ll tell you what repairs and adjustments you can make using standard test equipment．

Part 2LAST MONTH，IN THE first part of this arti－ cle，we skimmed through the basics of VCR＇s．We looked at VCR circuits and at how a video signal is recorded．Now let us drop the subject of circuits，and get on to more practical matters．

Keep in mind that about 95% of the circuits we＇ve described are contained in a few special－purpose IC＇s．（That applies equally to video，audio and servo cir－ cuits．）You can not get at the detailed circuits for test or analysis．Likewise，if there is a failure of even one circuit in an IC，the entire IC must be replaced（as is the case with most TV circuits）．About the only electronic components in a VCR that can be replaced on an individual basis are adjustment controls．We will talk about those components and the related adjust－ ments later on．But before that，let us discuss the test equipment and tools you need for VCR service．

Test equipment and tools for VCR＇s

The test equipment used in VCR ser－ vice is basically the same as that used in TV and audio service．Most service pro－ cedures are performed using meters，sig－
nal generators，color generators，oscillo－ scopes，frequency counters，power supplies，probes，and so on．However， there are some problems to be considered when selecting test equipment for VCR service．

The subject of tools，test jigs，and fix－ tures for VCR service is an entirely dif－ ferent matter．Generally，each VCR requires a special set of tools，available from the VCR manufacturers in the form of kits．Although there are some tools found in all kits，such as tension gauges， there are many special－purpose tools for most VCR＇s．Keep in mind that it is im－ possible to perform a full set of manufac－ turer－recommended test and adjustment procedures without having all of those special tools．

Let us consider the minimum require－ ments for test equipment and tools that you＇ll need to work with VCR＇s．

Meters

Any meter suitable for TV and audio work is probably suitable for VCR ser－ vice．（However，most VCR service litera－ ture lists audio signals in terms of dB＇s rather than volts，so a meter with a dB
scale would be useful and time－saving．）

Signal generators

As a minimum you should have a sweep／marker generator as well as an ana－ lyst and／or pattern generator for basic VCR service．

Color generators

You can perform some of the adjust－ ments required for VCR service with a keyed rainbow generator，but you must have an NTSC color generator to perform all of the adjustments．As a minimum，the NTSC generator should produce the stan－ dard NTSC bar pattern（for display on the TV screen）and a five－step linear staircase pattern（for display on an oscilloscope being used to monitor various points in VCR circuits）．

Oscilloscopes．

As in the case of meters，any oscillo－ scope suitable for TV and audio work will be fine for VCR service．That means a bandwidth of at least 10 MHz is best， although you probably could get by using a scope with a bandwidth of as low as 5－6 MHz ．

A HANDHELD MULTIMETER like this one should be fine for VCR servicing.

Frequency counters

If you want to go through a full set of VCR adjustments, you will need a frequency counter to check or adjust the various $3.58-\mathrm{MHz}$ oscillators in the color record and playback circuits, and to measure servo-system timing. Most frequency counters have a sufficient frequency range to measure the $3.58-\mathrm{MHz}$ signals; but many of the servo-system signals are in the $30-\mathrm{Hz}$ range, and low-cost counters often do not go down that far, or are not that accurate. Typically, low-cost counters have an accuracy of about 100 Hz . (Accuracy is not to be confused with counter resolution, which is set by the number of digits in the readout.)

One way to overcome the accuracy problem is to use the period function of the counter. (Again, many inexpensive counters do not have a period function.) When period is measured on a counter, the unknown input signal controls the counter timing gate, and the timebase frequency is counted and read out. For example, if the timebase frequency is 1 MHz , the indicated count is in microseconds (a count of 333 indicates that the gate has been held open for 333 microseconds. In effect, the timebase accuracy is divided by the time period. For $30-\mathrm{Hz}$ signals, where the time period is approximately $1 / 30$-second, an accuracy of 100 Hz is increased to $3.3 \mathrm{~Hz}(100 / 30)$. Of course,

A COLOR BAR PATTERN GENERATOR is useful, but an NTSC generator is preferred.
the period count must be divided into 1 to find the frequency.

No matter what frequency counter you select, check its accuracy at regular intervals. If it is not convenient to use WWV signals for such checks, a simpler method is to monitor the $3.58-\mathrm{MHz}$ oscillator in a color TV receiver. That oscillator is locked in frequency to a color broadcast at a frequency of 3.579545 MHz . The TV receiver oscillator remains locked to that frequency, even though the phase and color hue may shift. Keep in mind that the TV receiver should be operating properly (with good color rendition), and that a 7digit counter is needed to get the full frequency resolution.

Probes

Both the meters and oscilloscopes used for VCR service should have a full set of probes, including RF, demodulator, and low-capacitance probes. High-voltage probes are not usually needed for any VCR circuit.

Video monitor

If you are planning to go into VCR
service on a full-scale basis, you should consider a receiver/monitor such as used in studio or industrial video work. Those receiver/monitors are essentially TV receivers, but with video and audio inputs and outputs brought out to some accessible point (usually the front panel).
The output connections make it possible to monitor broadcast video and audio signals as they appear at the output of a TV-receiver IF section (the so-called baseband signals, in the range 0 to. 4.5 MHz , at 1 volt $\mathrm{P}-\mathrm{P}$ for video, and 0 dB , or 0.775 volt, for audio). Those output signals from the receiver/monitor can be injected into the VCR at some point in the signal flow after the tuner IF section.

The input connections make it possible to inject video and audio signals from the VCR (before they are applied to the RF output unit), and monitor the display. In that way, you can check the baseband output of the VCR independently from the RF unit.

If you do not want to go to the expense of a monitor, you can use a standard TV receiver to monitor the VCR. Of course, with a TV receiver the VCR video signals

THOUGH THE PHILIPS SCOPE shown here has a bandwidth of 50 MHz , you should do nicely with a scope with a $10-\mathrm{MHz}$ bandwidth.

THIS FREQUENCY COUNTER measures frequencies up to 1 GHz . But more important for VCR work, it measures signals down to 10 Hz .
are used to modulate the VCR RF unit. The output of the RF unit is then fed to the receiver's antenna input. Under those conditions, it is difficult to tell if faults are present in the VCR video or in the VCR RF unit. Similarly, if you use an NTSC generator for a video source, the generator output is at an RF or IF frequency, not at the baseband video frequencies.

If you use a TV receiver as a monitor, adjust the vertical height control to underscan the picture so you can see the video switching point in relation to the start of vertical blanking.

Special tools and fixtures

VCR service literature usually describes a number of adjustment procedures in extensive detail. Those procedures are useful in that they illustrate the use of special tools and fixtures available from the manufacturer, often in kit form. There are also other tools and fixtures used by the manufacturer for both assembly and service of VCR's. Those factory tools are not available for field service (not even to factory service centers in some cases). That is the manufacturer's subtle way of telling service technicians that they should not attempt any adjustments (electrical or mechanical) not recommended in the service literature.

The author strongly recommends that you take that subtle hint! He has heard many horror stories from factory service people concerning virtually ruined VCR's brought in from the field. Most of those problems are the result of tinkering with mechanical adjustments (although there are some technicians who can destroy a VCR with a simple electrical adjustment). One effective way to avoid any chance of destroying a VCR is to use only recommended factory tools and perform only recommended adjustment procedures (i.e. when all else fails, follow instructions!).

Hand tools

Except for those cases where special tools and fixtures are required, most VCR's can be disassembled, adjusted, and reassembled with common hand tools such as wrenches and screwdrivers. Keep
in mind that most VCR's are manufactured to Japanese metric standards, and your tools must match. For example, you will need metric-sized Allen wrenches and Phillips' screwdrivers with Japanese metric points. You will also need tools and applicators to apply solvents and lubricants (cleaner sticks for the video heads, etc.).

Alignment tapes

Most VCR manufacturers provide an alignment tape as part of their recommended tools. An alignment tape is housed within a standard cassette and has several very useful signals recorded at the factory using precise test equipment and signal sources. Although there is no standardization, a typical alignment tape contains audio signals (at low and high frequencies, such as 333 Hz and 7 kHz), an RF-sweep signal, a black-and-white signal or pattern, and NTSC color-bar sig-
nals. If you intend servicing one type of VCR extensively an investment in the recommended alignment tape would be well worth it.

A typical use for the audio signals recorded on the alignment tape is to check overall operation of the servo-speed and phase control systems. For example, if the frequency of an audio playback is exactly the same as recorded (or within a given tolerance), and remains so for the entire audio portion of the tape (as checked on a frequency counter), the servo control systems (both speed and phase) must be functioning normally. If there are any mechanical variations, or variations in servo control, that produce wow, flutter, jitter, and so on, the audio playback varies from the recorded frequency.
If you do not want to invest in a factory alignment-tape, or if you do not want to wear out an expensive factory tape for routine adjustments (alignment tapes do deteriorate with continued use), you can make up your own alignment tape or "work" tape using a blank cassette. The TV stations in most areas broadcast color bars before or after regular programming. (Use the VCR timer for convenience.) Those color bars can be recorded using a VCR known to be in good operating condition. Any stationary color pattern with vertical lines (such as the white color bar that extends down to the bottom of the screen) is especially useful.

Lapping cassette

A lapping cassette contains a non-magnetic tape coated with an abrasive. The idea is to load the lapping cassette and run the abrasive tape through the normal tape

A VIDEO MONITOR, such as this one from Sony, is extremely useful to have in almost any VCR-service application.
path (across the video heads, around tape guides, etc.) for a few seconds. That cleans the entire tape path (especially the video heads) quite thoroughly. However, prolonged use of a lapping tape can result in damage (especially to the video heads). Follow the manufacturer's recommendations. Never use any lapping cassette for more than a few seconds; there are other ways to clean the heads and tape path.

Installing a VCR

On the off-chance that you may not know how to install and connect a VCR, let us review some basics. Fig. 12 shows the connections for a typical VCR and applies to the great majority of VCR installations. As shown, if the antenna cable is 75 -ohms, connect it directly to the VHFin terminal; use an F-type connector. If the cable is a 300 -ohm ribbon type, connect the cable to a 300Ω-to- 75Ω adapter, then connect the adapter to the $\mathrm{VHF-IN}$ terminal.

Connect the vhF-out connector on the VCR to the VHF antenna terminal on the TV receiver with a 75 -ohm coax cable. If the TV is equipped with 300 -ohm antenna terminals, use an adapter. Connect the unf-out terminals on the VCR to the TV's UHF-IN terminals with the 300 -ohm cable.

Where a combination VHF/UHF antenna is used, separate the VHF and UHF signals using a signal separator, and connect the VHF and UHF lead-ins to VHF-IN and UHF-IN, respectively.

One note of caution: Connections between the VhF-out connector of a VCR and the antenna terminals of a TV should be made only as shown in Fig. 12, or as specified in the operating instructions. Failure to do so may result in operation that violates FCC regulations regarding the use and operation of RF devices. (You may broadcast TV programs to the entire neighborhood!) Never connect the output of the VCR to an antenna or make simultaneous (parallel) antenna and VCR connections at the antenna terminal of the TV!

Copying a video tape

Figure 13 shows connections for making copies of video tapes. The process is essentially the same as making a copy of an audio tape. However, keep two points in mind. First, each time a copy is made, the quality of the copy is not as good as the original. Second, you may be doing something illegal. Many of the programs broadcast by TV stations are protected by copyright, and federal law imposes strict penalties for copyright infringement. Some motion picture companies have taken the position that home recording for non-commercial purposes is an infringement of their copyrights. Until the courts have ruled on the proper interpretation of the law as applied to home video recording, a VCR used to record copyrighted

FIG. 12-FOLLOWING THIS VCR connection scheme will help insure that your video system will work properly.
material should be operated at the user's own risk.

Connecting a VCR to a CATV system

It is recommended that you consult with the cable TV company before installing any VCR. Always follow their recom-

mendations for installation. Also, before operating the VCR with any cable TV system, set the RF-modulator channel selector on the VCR to channel 3 or 4, whichever is not active in the area. If both channels are in use, check which gives better results.

Fig. 14 shows the most often recommended configuration for connecting a VCR to a CATV system. With the set up shown in that figure, it is possible to record programs from all CATV channels, as well as VHF channels 2 through 13. Set the TV channel selector to that of the VCR RF unit channel selector. Set the VCR channel selector to receive the output channel of the converter. Set the VCR program select switch to the VCR posi-
 system.
tion. With that connection, the channel to be viewed or to be recorded is selected on the converter.

Figure 15 shows another possible configuration for connecting a VCR to CATV. With that set up it is possible to view one program from the converter, while recording another program on VHF

FIG. 15-WITH THIS ARRANGEMENT it is possible to record a cable channel while viewing a VHF channel.
channels 2 through 13. Set the TV channel selector to the output channel of the converter and set the VCR program select switch to the TV position. For playback of the program recorded on the VCR, set the channel selector on the converter to that of the VCR RF-modulator channel selector. When the CATV channel converter is not needed, connect the CATV input to the VCR, then connect the VCR and TV receiver in the normal manner.
When we continue, we'll look at some troubleshooting procedures for VCR servicing.

R-E

texas instruments features a number of interesting sound-generator IC's in their semiconductor line; one of the most versatile is their SN76488N. That IC, an improved version of their SN76477N, is a monolithic device that combines both analog and digital circuitry. Like the other devices in the line, it boasts a noise generator, a VCO (Voltage-Controlled O scillator), an SLF (Super-Low-Frequency) oscillator, a noise filter, a mixer, attack/ delay circuitry, control circuitry, and even one-shot circuitry for generating momentary sounds. In addition to those features, the 76488 offers an internal 125 -milliwatt audio amplifier capable of driving an 8ohm speaker, and external outputs for the VCO, the SLF oscillator, the noise clock, and the one-shot circuitry.
The device can produce noises, tones, or low-frequency sounds either individually or in any combination. All sounds are programmed using control inputs and user-selected external components. The uses for that versatile IC are limited only by the user's imagination; and if you run out of ideas, a little experimentation is sure to turn up many more.

While most hobbyists like to breadboard with discrete components when either designing or experimenting, that technique has several drawbacks when designing with this IC. Since this IC can produce a wide variety of sounds, with each sound being determined by the value of the external components connected to it, it is far easier to listen to the sounds
produced by this IC while varying the value of the external components. The design console described here does just that; it enables you to control the value of those external components while listening to the sound produced.

Before we look at the console, and how it is built, it will be helpful to get to know the 76488 a little better. A block diagram of the device is shown in Fig. 1. Let's examine the operation of each functional circuit block

SLF oscillator

The SLF feeds a 50%-duty-cycle squarewave to the mixer. It also feeds a triangular wave to the external VCO or SLF-select logic circuitry; that circuit selects either external-voltage or SLF modulation of the VCO. If the vco-select pin, pin 20, is high, the SLF is fed through to modulate the frequency of the VCO; if it is low, an external voltage is used (more on that shortly). The SLF's normal operating range is 0.1 to 30 Hz , but it will

FIG. 1-BLOCK DIAGRAM of SN76488N sound generator. Refer to this figure as we describe the operation of the device.

NTS Electronics

Learn Robotics, Microcomputers, Microprocessors, Digital Video, Test Equipment and more with NTS InTRDML" home training. Courses include

NTS Intronic Training is a carefully developed and tested learning system providing a thorough intergration of advanced electronic hardware with modern lesson texts. The relationship between theory and practical applications is made clear through the hands-on experience of building and assembling kits of state-of-the-art equipment. Courses include a wide variety of test instruments, both digital and analog, as well as other units not shown here. And, depending on the NTS program you select, you can earn up to 30 CEU credits for successful completion. Our fullcolor catalog has complete details. NTS has taught industrial skills for over 78 years-a record

HERO 1 is included in two courses, one basic and one advanced. You'll cover principles of industrial electronics, microprocessor troubleshooting, fundamentals of mechanics, and robotic applications in industry. You'll learn analog and digital skills, radio control, fluidic, pneumatic and servo-mechanisms, as well as computer interfacing and robotic programming. HERO 1, complete with arm, gripper and speech synthesis board, is a fully self-contained electro-mechanical robot-the featured unit in the most exciting training programs ever offered in home study.

Training..........
 FIRST WITH TOMORROW'S

 TECHNOLOGY1. Advanced "Z Chassis" NTS/HEATH "Smart Set" with computer space command remote control and space phone. Originate or receive telephone calls through this set and the number appears on the screen-store your police and other emergency numbers into memory which may be recalled and auto-dialed at any time. Traditional and incomparable picture quality. Unit has Quartz Controlled Tuning, 178 channel capacity, remote antenna switch accessory for reception of VCR, VDR, Broadcast, Cable, Video Games, and Personal Computer Input (no cable change) plus computer- controlled color. Featured in all-new Video Technology Course.
2. NTS/HEATH HN89A Microcomputer is included in two programs. This famous and reliable unit features Floppy Disc Drive, 48K Memory on Board, CRT Terminal with its own Z-80 Processor, and standard keyboard as well as Numerical Input Keyboard. The growing importance of computer knowledge and skills have made these programs increasingly significant. The experience gained in assembling these kits is invaluable in the understanding of computer troubleshooting skills.
3. NTS Microprocessor Trainer is included in our Industrial and

Microprocessor Technology Course. It is a portable unit, contained in a convenient high-impact carrying case. Hardware/ Firmware includes Monitor Operating SystemExpandable User Memory-User Experimental OnBoard Section-Breakpoint Editor-Single Step TraceCassette I/O.

NO OBLIGATION
NO SALESMAN WILL CALL

TECHNICAL TRADE TRAINING SINCE 1905 Resident and Home-Study Schools 4000 So. Figueroa St., Los Angeles, CA 90037

Use the mail-in card or fill out and mall the coupon. Indicate the field of your choice. (One, only please.) FREE full color catalog will be sent to you by return mall.

produce frequencies of up to 20 kHz . The SLF frequency is determined by two external components, the SLF-control resistor connected to pin 18 and the SLFcontrol capacitor connected to pin 19. The output of the SLF is available externally from pin 4 and can drive one TTL load.

Voltage controlled oscillator (VCO)

The VCO produces a tone whose frequency depends upon the voltage at its input. That controlling voltage can be either the SLF output described above, or an externally generated signal applied to the external vco control pin, pin 15. The higher the voltage applied to the VCO, the lower the VCO frequency. The minimum VCO frequency is determined by two external components: the VCOcontrol resistor connected to pin 17 and the VCO-control capacitor connected to pin 16. The maximum frequency of the VCO is ten times the minimum frequency. The method of controlling the VCO is selected by the logic-level present on pin 20. If that logic level is low, the VCO frequency is controlled by the external signal applied to pin 15 . The input at pin 15 may be a DC voltage, which produces a constant tone, or any digital or analog signal. If the logic level at pin 20 is high, the VCO frequency is controlled by the output from the SLF oscillator.

The output of the VCO is a squarewave and is supplied to the mixer and, if selected by the envelope-select logic, to the envelope generator and modulator. The VCO output is available at pin 2 and can drive a single TTL load.

Noise clock

The noise clock internally generates a clock signal and supplies it to the noise generator; the minimum frequency of that clock signal is 10 kHz . The clock signal is also available externally at pin 3 ; it is capable of driving one TTL load.

Noise generator/filter

The noise generator produces pseudorandom white noise that passes through the variable-bandwidth low-pass noise filter before being fed to the mixer. That filter has its cutoff point defined by the noise-filter control resistor connected to pin 5 and the noise-filter control capacitor connected to pin 6.

Mixer

The mixer combines one or more signals from the SLF, VCO, and noise generator by performing a logical AND function and feeds the resulting output signal to the envelope generator and modulator. The signals that are to be input to the mixer are chosen by setting the logic levels present on the MIXER-SELECT pins, pins 23, 24, and 25 , in accordance with those shown in Table 1. Figure 2 shows how the mixer combines an SLF and noise signal to produce an SLF/noise output. If more than

FIG. 2-THE MIXER combines the SLF output, shown in a, and a noise signal, shown in b, to produce the output shown in c.
one sound at a time is desired, (for example, a car engine and siren, or a steam engine and whistle), multiplexing is required. That can be done by switching the mixer-select lines at such a rate that the two sounds seem to occur simultaneously. A multiplexing-drive signal with a 50% duty cycle is required to provide equal amplitudes for both sounds. The frequency of that signal should be above the range of human hearing (i.e., above 20 kHz).

One shot

The one-shot circuit controls momentary sounds, and is triggered by a high-tolow logic-level transition at the systemenable pin, pin 9. The duration of the one-shot's output is determined by the one-shot control resistor connected to pin 22 and the one-shot control capacitor connected to pin 21 . The maximum duration of the signal is approximately 10 seconds. The signal can be cut off earlier by taking the system-enable pin high. If that is done, however, the one-shot timing must be allowed to end before another one-shot timing sequence can be triggered; that is
necessary to allow an internal latch to reset. The output of the one-shot is fed through the envelope-select logic to the envelope generator and modulator. Rather than being a sound source, the one-shot signal merely provides an envelope for the sound that is output from the mixer. The one-shot circuit is operational only when the one-shot envelope is selected as explained in the next section. Its output is available at pin 1 and can drive one TTL load. While in the one-shot mode, the SLF ramp can be forced to start at either a high or low level by placing a high or low logic-level respectively on the SLF-Select pin, pin 26.

Envelope select

The envelope-select logic determines which envelope is combined with the mixer output in the envelope generator and modulator. That envelope is selected using the envelope-select pins, pins 27 and 28. The operation of the envelopeselect circuit is summarized in Table 2. Figure 3 shows the four possible envelopes that could be generated. The noise and VCO inputs to the mixer are shown in Fig. 3-a. If the mixer-only function is selected as shown in Fig. 3-c, the mixer output is supplied continuously to the audio amplifier. If the VCO function is selected as shown in Fig. 3-b, the squarewave output of the VCO is the envelope for the mixer output, meaning that the mixer output is passed on to the audio

FIG. 3-WITH THE MIXER AND VCO outputs as shown in a, the four possible envelopes that could be generated are shown in $b-c$.

amplifier while the VCO output is high but not when it is low. The VCO with-alternating-polarity function, shown in Fig. 3-e, is similar to the VCO function described above except that the output from the mixer is enabled only during every other VCO pulse. When the oneshot function is selected, the output from the mixer is enabled only for the duration of the one-shot pulse as shown in Fig. 3-d.

Decay control

The decay circuitry, which is part of the envelope-generator-and-modulator block, alters the fall time of the envelope selected by the envelope-select logic. The decay time is determined by the decaytiming capacitor that is connected to pin 8 , and the decay-timing resistor that is connected to pin 7. The decay has no effect on the mixer-only function, but for the one-shot, VCO, and VCO-with-alter-nating-cycle functions, the decay ramp is triggered by each high-to-low transition of the envelope; it serves to prolong the sound at a decreasing volume that is proportional to the selected decay-rate. Figure 4 shows examples of how a waveform may be modified by decay when the mixer output is noise and the one-shot envelope is selected. Figure 5 shows a similar example, this time using a VCO rather than a one-shot envelope.

FIG. 4-HOW A WAVEFORM IS MODIFIED by decay when the mixer output is noise and a oneshot envelope is selected.

FIG. 5-IN THIS EXAMPLE of how a waveform is modified by decay, the VCO envelope is selected.

System enable

The system-enable logic provides enable/select control for the sound output of the system. A high logic-level at the system enable pin (pin 9) inhibits the sound output, a low logic-level (or open pin connection) enables it. That pin is also used to trigger the one-shot circuit for momen-
tary sounds such as gunshots, bells, explosions, etc. The one-shot logic is triggered on the negative-going edge of a system-enable input signal. The input applied to pin 9 must be held low for the entire duration of the one-shot sound, including attack and decay periods, if the sound is to be completed. Taking pin 9's input high early, terminates the sound.

Output amplifier

The output amplifier (see Fig. 6) is contained entirely on the IC and and has a push-pull output capable of delivering 125 mW into an 8 -ohm load connected to pin 13. External signals may be input to the amplifier via pin 10.

FIG. 6-THIS AMPLIFIER is entirely contained on the IC and is capable of supplying 125 mA into a capacitively-coupled 8 -ohm load.

Regulator

The 76488 will operate from a singlevoltage power supply connected between pin 12 (positive) and pin 14 (ground); an internal 5 volt regulator allows use of an unregulated supply of between 7.5 and 10.5 volts. In addition to supplying power for the IC, the regulator is capable of providing a regulated 5 -volts, at up to 5 mA , from pin 11 for use by any external circuitry. That is used to supply the highlevel logic voltage used by the design console.

That concludes our look at the SN76488; its pinout is shown in Fig. 7. We'll now turn to construction of the design console itself.

Console construction

Construction of the design console is relatively simple and straightforward. The schematic for the circuit is shown in Fig. 8. Little about the design is critical, and substituting freely from your junk-box can help hold down the device's cost. In the author's version, for instance, mica capacitors were used in place of ceramic discs in some instances simply because they were on hand. You can't, of course, substitute for the sound-generator IC. If your local supplier does not stock that device, it is available from Active Electronics, PO Box 1035, Framingham, MA 01701.

A $87 / 16 \times 77 / 16$-inch instrument case and cover were used to house the prototype

PARTS LIST

All resistors 5\% unless otherwise noted
R1-R6-1 megohm, potentiometer, linear taper
R7- 100,000 ohms
R8 - 50 ohms, potentiometer, audio taper Capacitors
C1, C18-390 pF, ceramic disc
C2 $9-680 \mathrm{pF}$, ceramic disc
C3-1000 pF, ceramic disc
C4, C13-. $22 \mu \mathrm{~F}$, ceramic disc
$\mathrm{C} 5, \mathrm{C} 12-47 \mu \mathrm{~F}$, ceramic disc
C6, C11- $4.7 \mu \mathrm{~F}, 25$ volts, electrolytic
C7, C9, C10, C15- $10 \mu \mathrm{~F}, 25$ volts, electrolytic
C8- $220 \mu \mathrm{~F}, 10$ volts, electrolytic
C14-22 $\mu \mathrm{F}, 10$ volts, electrolytic
C16- $1 \mu \mathrm{~F}, 10$ volts, electrolytic
C17, $\mathrm{C} 22-0.1 \mu \mathrm{~F}$. ceramic disc
C20-. $005 \mu \mathrm{~F}$, ceramic disc
C21-. 01μ F, ceramic disc

Semiconductors

IC1-SN76488N sound generator (TI) B1-9-volt battery
S1-S5-1 pole, 6 position rotary switch
S6-S19-SPST miniature slide switch
S20, S21-SPDT miniature slide switch
S22-SPST momentary pushbutton switch, normally open
TP1-TP18-test point jack
J1-J3-phono jack
Miscellaneous:IC socket, perforated construction board, case, etc.
Adhesive backed overlays for the front panels are available from Design Specialty, 15802 Springdale St, No. 80, Huntington Beach, CA 92649. The cost is $\$ 3.00$ each, postpaid. California residents add state and local taxes.

FIG. 7-PINOUT of the SN76488N sound generator IC from Texas Instruments.
console. In lieu of a phenolic case cover, a $1 / 8$-inch piece of plywood may be used. We've used both and prefer the plywood because it is easier to work with.

Assembly is begun by mounting the capacitors on rotary switches S1-S5 so that when looking at each switch from front to back and rotating it clockwise, the component values are selected in the order shown in Fig. 8. The layout of the front panel can be seen in the photo on the first page of this article. After the switches are wired, cut holes in the console cover to match that layout. Although not required, the easiest way to do that is to mount a full-sized version of the front panel layout and use it as the cutting template. For those who wish to go that route, full-sized copies of the overlay, with adhesive backing so that it can be applied directly to the front panel, are available from the source given in the Parts List.

After the cover preparation is complete, mount the slide switches to the cover, using either screws or an adhesive. If using screws, use the flat-head type and countersink them flush with the cover surface. If an adhesive is used, a cyanoacrylate adhesive (super glue) works well on the phenolic material, while a siliconerubber compound works well with plywood. When using a cyanoacrylate adhesive, use extreme caution to avoid getting any of it on your fingers or on the movable-slide part of the switch. If a silicone rubber compound is used, be sure to allow ample time for the compound to cure before attempting any further work with the switches.

After securing the slide switches to the cover, the remaining switches and jacks should be mounted. If desired, attach a $21 / 2$ inch speaker to the inside of the case after drilling a sufficient number of "grill" holes to insure adequate volume; provisions have also been made for an external speaker.

Begin wiring the console by connecting together all of the +5 -volt points; do the same for all of the grounds. Next, connect the wiper terminal of each variable resistor, R1-R6, to its associated jack, and that jack to its associated switch. Finally, make the connections between S 8 , S22, and J21; make the component connections to J21, J22, S21, and S20, and connect the positive lead of a 9 -volt battery snap to S 9 .

Complete the console wiring by mounting a 28 -pin DIP socket on a piece of perforated construction board and, using two pieces of 14 -conductor ribboncable, connect the pins of the 76488 to the appropriate components as the schematic shows.

Using the console

After becoming familiar with the functions of the console controls, using them to create your own custom sounds will be easy, fun, and exciting. To help with the familiarization process, console set-up

FIG. 8-SCHEMATIC DIAGRAM of the SN76488N design console. As nothing in the circuit is especially critical, reasonable substitutions from your junkbox can be made to reduce the construction cost.
procedures for a few sounds are provided below. Before setting up the console for each new sound, set all controls and switches so that no component or control signals are connected to the 76488.

Gunshot/explosion

1. Close S10 and S13 (pins 28 and 25).
2. Set R3 (pin 22) to 330 K by using a voltmeter to measure the resistance between TP7 and TP14 (pins 14 and 22). After the resistance value is set, close S16 (pin 22).
3. Set S3 (pin 21) to $.47 \mu \mathrm{~F}$.
4. Set S1 (pin 6) to 680 pf .
5. Following the same procedure as outlined in step 2, set R2 (pin 7) to 120K.
6. For the gunshot, set R1 (pin 5) to 33 K and $\mathrm{S} 2(\mathrm{pin} 8)$ to $.47 \mu \mathrm{~F}$.
7. Turn the console power on at pin 12,
close S 8 , and momentarily depress S22 (pin 9). Upon release of the switch, the gunshot sound will occur.
8. For the explosion, set R1 to 220 K and S 2 to $10 \mu \mathrm{~F}$. Again momentarily depress S22.

Siren/phasor

1. Set S17 (pin 20) to + .
2. Set S4 (pin 19) to $10 \mu \mathrm{~F}$.
3. Set R5 (pin 17) to 1.8 K .
4. Set S5 (pin 16) to $.1 \mu \mathrm{~F}$.
5. Turn on console power.
6. Vary R4 (pin 18) to obtain the siren and phasor sounds.

Those are just a few of the sounds that the console is capable of generating. There are, of course, quite a few more. To find them, all you need is a little practice and patience. Happy experimenting! R-E

How to Design

MANNY HOROWITZ

Transistor Switching Circuits

FIG 1.-CHARACTERISTIC CURVE of a typical bipolar transistor.

This month we'll learn how to design switching circuits using transistors, as well as other devices.

WE'VE ALREADY LEARNED ABOUT HOW transistors and other solid-state devices are used in circuits such as amplifiers, oscillators, etc. There are, of course, many other applications for those devices. One of the most common, and useful, of those applications is in electronic switching circuits. Unlike analog circuits where the output signal is some function of the input, in switching circuits the output is in one of only two states - on or off. This month, we are going to begin our look at electronic switching circuits, beginning with the most basic of them, the transistor switch.

Transistor switches

To use a transistor as a switch it must be biased so that the device is in either one of two states. In one of those states, the transistor is "off" and no collector current flows. In the other, the transistor is "on" and the collector current is limited only by the resistances in the emitter and collector circuits.

There are three common ways to bias a transistor so that it operates as we just
described. Those methods of biasing are refered to as modes of operation. In what is referred to as the saturated mode of operation, the transistor is turned on by biasing it so that it is in, as you might have guessed, saturation. When that happens, the voltage across the transistor, called the saturation voltage, is at a minimum and depends on the collector current and load resistance. The device is turned off by biasing it so that it is in cutoff.
When a transistor is turned on in the second mode of operation, the current mode, it is biased so that the transistor operates near, but not quite in saturation. The collector-emitter voltage is somewhat above the saturation voltage of the device. Once again, the transistor is turned off by biasing it so that it is in cutoff.
Switching speed is faster in the current mode of operation than it is in the saturated mode. It is still faster, however, when the transistor is used in the avalanche mode. In that mode, the on and off states of a transistor are maintained in the breakdown portion of its curve. The switching speed of a transistor in the ava-
lanche mode is exceeded only when tunnel, snap-off, hot-carrier, or pin diodes are used as the switching devices.

Switching modes

A transistor's characteristic curves can be approximated as shown in Fig. 1. Each curve (which here is shown as a relatively horizontal line) represents the relationship between the collector current, I_{C}, and the collector-emitter voltage, V_{CE}. You'll note that several of those curves are plotted in the figure. That's because the relationship between I_{C} and V_{CE} depends on the base current, I_{B}; each curve shows the relationship for a specific value of I_{B}.

The more-or-less vertical solid line near the vertical axis represents the saturation resistance of the transistor. That resistance is equal to $\mathrm{V}_{\mathrm{S}} / \mathrm{I}_{\mathrm{S}}$. At the maximum permissible transistor collector current, I_{S}, the minimum voltage that can be across the transistor is V_{S}, the saturation voltage. That voltage is reduced at lower collector currents.

A load line is also shown in the figure. It extends from V_{CC} on the V_{CE} axis to
$\mathrm{I}_{\text {MAX }}$ on the I_{C} axis. You'll note that even when the transistor is fully turned on by the application of a large current to the base, the collector current cannot reach $\mathrm{I}_{\text {MAX }}$ if the device's load line is as drawn in Fig. 1. The maximum current that flows is determined from the point where the load line crosses the saturation resistance curve. Collector current at the intersection of the two lines is at its maximum. It cannot be made any larger no matter how much the base current is increased.

Saturation and current modes of operation function only if a steady input voltage is applied to the base circuit of the transistor to keep it in either the on or off state. Examine the circuit shown in Fig. 2. The transistor is kept in the off state by the presence of $-\mathrm{V}_{\mathrm{BB}}$ at the base. That supply applies a negative voltage to the base with respect to the emitter. That negative voltage keeps the transistor turned off. When a sufficiently positive voltage is applied between the base and emitter at input $\mathrm{V}_{\text {IN }}$, the transistor is on and collector current flows. Thus the applied voltages determine the state of the transistor and whether or not there is any collector current flowing through R_{L}.

Saturation mode

Switching is not instantaneous, especially in the saturation mode of operation. It takes time for the transistor to go from an off state to an on state as well as from an on state to an off state. Let's start our examination of the saturation mode by assuming the transistor is turned off. We'll be referring to Fig. 2 once again as we proceed through the following discussion.

When a positive pulse of voltage is applied to $\mathrm{V}_{\text {IN }}$, it is also applied to the base of the transistor. That positive pulse causes base current to flow instantly, but there is a lapse of time before the baseemitter voltage reaches even a 0 -volt level. Collector current, on the other hand, does not start to flow until the base-emitter voltage is just above zero. The time between the application of the positive voltage to the base and the instant that the collector current reaches 90% of its maximum, is referred to as the turn-on time. The phrase

FIG. 2-CURRENT FLOWS through R_{L} when a positive pulse is applied to V_{IN}. The flow is stopped when that pulse is removed.
"delay time" is also used to describe that turn-on period.

After the positive input voltage has been removed, the negative ($-\mathrm{V}_{\mathrm{BB}}$) supply takes over to restore the transistor to an off state. But that does not occur instantly. First, the base current becomes negative for a while, but eventually the base-emitter junction ceases to conduct current in either direction. As for the base-emitter voltage and collector current, they remain positive for a short interval after the positive switching voltage has been removed. The time it takes for the collector current to drop to 90% of its maximum after the positive voltage has been removed is called storage time. It is caused by the capacitances formed in the transistor when it is in saturation. Those capacitances are charged when the transistor conducts and discharged relatively slowly after the transistor has been turned off.

Capacitor C_{B} is not an essential component in the circuit. It is included only to increase the switching speed. To determine what its capacitance must be you must first determine the saturation current, $\mathrm{I}_{\mathrm{C}(\mathrm{SAT})}$, of the transistor; it is equal to $\mathrm{V}_{\mathrm{CC}} \mathrm{R}_{\mathrm{L}}$. Next, calculate what R_{X} should be by setting it equal to $\mathrm{V}_{\mathrm{BB}} / \mathrm{I}_{\mathrm{CBO}}$ where $\mathrm{I}_{\mathrm{CBO}}$ is the collector-to-base leakage current when the transistor is operating at its maximum temperature. Continue the design by plotting the load line for the collector circuit as shown in Fig. 1. From that plot, estimate the approximate base current, I_{BS}, at the point where the load line crosses the transistor's saturation resistance curve. In Fig. 1, it is about midway between $\mathrm{I}_{\mathrm{B} 4}$ and $\mathrm{I}_{\mathrm{B} 5}$. If the maximum voltage applied to the input of the circuit is $\mathrm{V}_{\mathrm{IN}(\max)}$,

$$
R_{\mathrm{B}}=\mathrm{V}_{\mathrm{IN}(\text { max })} / I_{\mathrm{BS}}-I_{\mathrm{CBO}}
$$

$$
{ }^{\mathrm{I}_{\mathrm{c}}}
$$

FIG. 3-IN THE AVALANCHE switching-mode transistors operate in the breakdown region of their characteristic curves.

Capacitor C_{B} is used to increase the positive drive on the transistor at the instant that $\mathrm{V}_{\text {IN }}$ is applied. Its capacitance can be calculated mathematically, but it is best that the circuit be built and different capacitors placed across R_{B} until it is determined which capacitor will provide you with reasonable performance in a particular switching application.

Another factor that you may run into when designing a switching circuit is latch-up. In that situation, the reverse voltage applied to the base circuit is insufficient to bring conduction down to its lowest level. Instead, collector current drops only to some level above the desired minimum. That low current is determined by the point where the load line crosses the breakdown section of the collector curve. (The breakdown portion of the curve is illustrated in Fig. 3. It is the vertical sections of curves 1,2 and 3.) Should latch-up occur, increase the negative or reverse-bias voltage that is applied to the base circuit.

Current mode

To improve the switching speed of a transistor it should be kept out of saturation when turned on. When that is done, the transistor is said to be operating in the current mode. In that mode of operation, the off states are identical to those in the saturated mode, while the on states differ in that in the current mode the transistor is kept just slightly out of saturation. (The excess charge in the base is kept to a minimum.)

In the current mode of operation, the transistor can be kept off by a resistorbattery combination connected between the base and ground. That is shown in the current-mode switching circuit shown in Fig. 4. Note that there is also a resistor-battery-diode combination in the emitter circuit of the transistor; let's take a closer look at it.

Diode D1 is kept turned on at all times because of the polarity of the V_{EE} supply. If a silicon junction diode is used, about 0.7 volt is across the device. If there is no voltage between ground and the base,

FIG. 4-A BATTERY AND RESISTOR are connected between the base and ground in a cur-rent-mode switching circuit.
only that diode voltage would be between the base and emitter of the transistor, keeping it turned on. But the transistor does get turned off due to the presence of the $-\mathrm{V}_{\text {BB }}$ supply. To keep the transistor turned off, V_{BB} must be large enough to counter the voltage across the diode.

The real significance of the emitter circuit is seen when the transistor is turned on by a positive pulse at V_{IN}. If there's only a resistor in the emitter circuit, or a short as in Fig. 2, the collector current will be equal to the beta of the transistor multiplied by the base current $\mathrm{I}_{\text {IN }}$. If $\mathrm{I}_{\text {IN }}$ is sufficiently large, the collector current can be driven into saturation. But the presence of D1, R_{E} and V_{EE} in the emitter circuit prevents that from happening so that the maximum transistor current level is less than its saturation current. That maximum is set by the components in the emitter circuit.

Because of the orientation of the diode in the circuit, no current from the emitter can flow through it. But it does limit the current through R_{E} because of the 0.7 volt developed across the diode. The current flowing through R_{E} is the maximum current that can flow through the emitter or collector circuit of the transistor. With that as the current limit when the transistor is turned on, the transistor will stay out of saturation if $\mathrm{V}_{\mathrm{CC}} / \mathrm{R}_{\mathrm{L}}$ is greater than is the current in R_{E}. For practical purposes, the current through R_{L} should be limited to a maximum of $\mathrm{V}_{\mathrm{EE}} / \mathrm{R}_{\mathrm{E}}$.

Avalanche mode

In current- and saturation-mode switching, a voltage with a specific polarity must be maintained at the base of the transistor to keep it either in an on or an off state. The relative polarity of the applied voltage depends on whether you want to keep the transistor turned on or off. In the avalanche switching-mode, however, an instantaneous pulse is all that is required to keep the transistor in either an on or off state. An additional advantage for that arrangement is that the circuit switches at almost the instant that the switching pulse is applied.

The circuit used in that mode of operation is basically the same as is used for the saturation mode (see Fig. 2). Now, however, C_{B} is not needed to improve the switching speed, for it is quite rapid even without the capacitor in the base circuit. In addition, the V_{CC} voltage in the avalanche mode of operation is quite high, so that operation of the transistor is in the voltage breakdown region of the collector characteristic. The characteristic curves in that breakdown region, along with the load line for R_{L}, are shown in Fig. 3 .

Curve 1 shows the collector characteristics when the base current is 0 mA ; curve 2 is the collector voltage-current relationship when the base current is somewhat negative. Curve 3 is for the case where the base current is very negative but within the region where the transistor will not be
destroyed. (Reverse base current obviously depends to a large degree upon the reverse base voltage applied for test purpose to the base circuit.) Besides the load line, the other curves shown illustrate the usual transistor characteristics when the base current is positive. The latter group of characteristics is the one usually shown on data sheets.

When the transistor is idling, assume that the negative base voltage, $-\mathrm{V}_{\mathrm{BB}}$, is of such magnitude that the transistor idles at point a on curve 2. A positive voltage at $\mathrm{V}_{\text {IN }}$ will push the idling point to a second curve. That second curve is determined by the magnitude of the positive voltage applied to the base. If we assume that that curve is for $\mathrm{I}_{\mathrm{B}}=0$, then the new idling point is at B on curve 1. It remains on that curve as long as a base voltage is applied. At the instant the positive voltage is removed, the on-point drops to point C on curve 2 because only $-V_{B B}$ remains to bias the base-emitter junction. The transistor keeps idling at that point despite the absence of any voltage or additional pulse. It is stable because the slope of the load line, $1 / R_{\mathrm{L}}$, is less than the slope of the transistor curve. Ordinarily, a point on that portion of the curve would not be stable because of the transistor's negative resistance. But in this case, operation does not shift from point C because of the relative slopes of the load line and transistor curve.

A negative pulse must be applied to the circuit in order to turn the transistor off or to lower the collector-current level. If the negative pulse is of sufficient magnitude, the collector current will drop to point D on curve 3 . When idling there, the transistor remains turned on. But at the instant the negative pulse is removed, operation reverts to a point on curve 2 . That point is point E. Because the slope of the transistor curve around point E is less than the slope of the load line, the transistor cannot remain in an idling condition at that point. If the transistor is idling in the off state, it reverts rapidly to point A, the starting point. Here, current is at a minimum and the transistor is effectively turned off.

Switching FET's

Even though their switching speed is slower than that of bipolar devices, FET's have the advantage of superior on-to-off current ratios. The slower switching speed is due to the FET's large internal capacitances.

The characteristic curves of an n-channel FET, and the load line for the drain circuit, are shown in Fig. 5. Although the curves shown are not of any particular device, they can be used to describe the switching action of the FET in general. A schematic of an FET switching circuit is shown in Fig. 6.

With no positive voltage applied at V_{IN}, a negative voltage exists between the source and gate due to the $-\mathrm{V}_{\mathrm{GG}}$ supply.

FIG. 5-THE CHARACTERISTIC CURVES of a typical FET, as well as a load line for the device, is shown here.

If that voltage is more negative than -8 volts (that is the pinch-off voltage for the device we are examining) very little current flows through the drain circuit. This can be found from the curves; note that I_{D} is very low when $\mathrm{V}_{\mathrm{GS}}=-8$. Thus, drain current is negligible because the transistor is operating in the pinch-off region.

A positive voltage at V_{IN}, or 0 -volt at the gate, puts the operation of the transistor at the upper end of the I_{D} range where conduction is at a maximum. No matter what the collector load is, current flows through it.

FET switches can be considered in another way. When the transistor current is at a minimum, operation is in the pinchoff region (the right hand section of the curves). Because the curves there are almost parallel to the x -axis, the drain resistance is extremely high. That high resistance limits the drain current to minute levels.

Once it has been turned on, the FET operates in the ohmic region (the lefthand portion of the curves). In the ohmic region the characteristic is almost vertical and the drain resistance is extremely low, permitting relatively large amounts of

FIG. 6-AN FET SWITCHING CIRCUIT. In such a circuit, the ratio of the on and off resistances is very high.
drain current to flow. Those respective on and off resistances make the on-to-off current ratio of an FET extremely high.

IC switches

The 555 IC has been used as a time delay switch (among other things) for over a decade. Its operation revolves around three circuits-a comparator, an S-R flip flop, and an inverter. The comparator can be an op-amp without a feedback circuit, as shown in Fig. 7-a. In the circuit, a fixed voltage is applied to one input terminal while a variable voltage is applied to the other. Whether the output will be at $+\mathrm{V}_{\mathrm{CC}}$ or at $-\mathrm{V}_{\mathrm{CC}}$, the positive or negative supply voltage, depends upon the relative magnitudes and polarities of the voltages applied to the two input terminals. Note that in some circuits, $-\mathrm{V}_{\mathrm{CC}}$ is set equal to 0 volts, so that the output from the op-amp will vary from 0 to $+V_{\mathrm{CC}}$.

FIG. 7-THE THREE MAJOR circuits in a 555 timer IC. They are a comparator (a), an S-R flipflop (b), and a nOT gate (c).

Suppose a fixed +5 volts is applied to the non-inverting input of the comparator and less than +5 volts (or even a negative voltage) is applied to the inverting input; then the output will be $+\mathrm{V}_{\mathrm{CC}}$ volts. Should the voltage at the inverting input be greater than +5 , regardless of how little, the output becomes $-\mathrm{V}_{\mathrm{CC}}$. In a similar fashion, if the inverting input is set at a fixed +5 volts, the output is minus V_{CC} when the voltage at the non-inverting input is less than +5 volts, and is $+\mathrm{V}_{\mathrm{CC}}$ when the voltage at the non-inverting input is higher than +5 volts.

To sum up, the comparator compares the respective voltages at its input terminals. If the voltage at the non-inverting input is greater than that at the inverting input, the output is $+\mathrm{V}_{\mathrm{CC}}$, and if the voltage at the non-inverting terminal is less than that at the inverting terminal, the output is $-\mathrm{V}_{\mathrm{CC}}$. The change in polarity at the output occurs when the two input voltages are identical.

The second circuit in the IC is an S-R flip-flop; it is shown symbolically in Fig. 7-b. By itself, a flip-flop is a switch that's made up of digital logic circuits. In the type of flip-flop considered here, when the S terminal is low while the R terminal is high (the actual voltage levels for the high and low depend upon the flip-flop), the \bar{Q} output is high. Should the conditions at the R and S inputs be reversed, the $\overline{\mathrm{Q}}$ output is low.

Next, let's look at what happens when an input that's high is taken low again. Say, for instance, that the R input is high and the S input is low. When the R input is taken low again, the $\overline{\mathrm{Q}}$ output does not go low again as you might expect; instead it is latched high and will remain so until the S input is taken high. If the conditions were reversed (i.e. the S input high and the R input low) the $\overline{\mathrm{Q}}$ output would remain low until the R input is taken high. When both inputs are low the output remains in its previous state. Thus, this flipflop can act as a switch. To change the state at the output all you need to do is reverse the states of the voltages at the inputs. In this type of flip-flop, care should be taken to prevent both inputs from being taken high at the same time.

The third circuit in the 555 is an inverter, often called a NOT gate; the symbol for that circuit is shown in Fig. 7-c. It gets its name from the fact that its output is the inverse of its input. Specifically, when the input to the gate is high the output is low, and vice versa.

A functional block diagram of a 555 is
capacitor connected to pin 6 . The time it takes to charge the capacitor is instrumental in determining the time it takes for the output to switch from a high to a low state. The charging process can take place only after a negative pulse has been applied to pin 2. Pin 7 is connected to pin 6 so that the capacitor will discharge after the internal transistor, Q1, connected to pin 7 has been turned on. All of the external components and connections we've discussed are shown in Fig. 9.

Before power is applied to pin 5, it is at ground potential because the capacitor connected there is fully discharged by the two identical internal resistors that run from it to ground. A slight potential may exist at pin 6 because the "hot" terminal of the capacitor in the timing circuit, C_{T}, is brought only close to ground potential through the internal discharging transistor (Q1 via pin 7), but is never precisely at ground. The slight voltage on the capacitor is due to the existence of a saturation voltage in the discharging transistor, just as it exists in any other transistor. That voltage, however small, is always across

FIG. 8-FUNCTIONAL BLOCK DIAGRAM of a 555 timer IC.
shown in Fig. 8. In it you can see how the three circuits we've just discussed are used in that device. The IC is idling when a voltage higher than $2 \mathrm{~V}_{\mathrm{CC}} / 3$ is applied to $\operatorname{pin} 2$. A $0.01-\mu \mathrm{F}$ capacitor is usually connected between pins 5 and 1 ; that stabilizes the DC voltage at the input to comparator A . The switched voltage from the IC is developed across a load resistor, R_{L}, or some other device. That load is connected between pins 3 and 8 .

In addition to the above, an R-C timing network is connected between pins 8 and 1 , with the junction of the resistor and

the transistor, and is consequently across the capacitor. As a result, voltage at the output of op-amp A is high at the instant that power is applied to the circuit.

Voltage at the output of op-amp B is at zero because when power is initially applied to the device, the non-inverting input of that op-amp is again grounded through an internal resistor in the IC. At the same time, the inverting input, which is tied to pin 2, is held at some value above $2 \mathrm{~V}_{\text {CC }} / 3$ as discussed above. That condition is one that must be satisfied if the 555 is not to be triggered.

The outputs from op-amps A and B are applied to the R and S inputs of the flipflop respectively. Thus, when the output from op-amp B is low and the output from op-amp A is high, the Q output of the flipflop is high. But the signal available at pin 3 of the 555 is low; that's because the output from the flip-flop is passed though the not gate before it is fed to pin 3. The discharge transistor, Q1, is turned on by the high voltage at \bar{Q}. The transistor shorts the timing capacitor, to maintain the status quo of the circuit and keep the output low.

The initial low output level from the IC is maintained from the time that power is applied to the circuit until a negative pulse is applied to the trigger input, pin 2. That status quo is maintained because almost immediately following the application of power, the supply voltage is applied, via a resistor, to the inverting input of op-amp A. Because of that, a low is applied to the R input of the flip-flop. As for op-amp B, its output is maintained low because the idling voltage from the trigger input, pin 2, which is high, is applied to the noninverting input of that op-amp. As low voltages are at the R and S inputs of the flip-flop, the output from the IC cannot change states; it remains low. The discharge transistor remains turned on until the S input goes high.

When a short negative pulse with a voltage of less than $1 / 3 \mathrm{~V}_{\mathrm{CC}}$ is applied to pin 2, op-amp B's output goes high and that signal is applied to the S input of the flip-flop. That brings \bar{Q} low. The low signal is subsequently inverted by the NOT gate and is available as a high at pin 3 of the 555. In the meantime, the low at the \bar{Q} output of the flip-flop, which is connected directly to Q 1 , turns that discharging transistor off. That, in turn, removes the short from across the timing capacitor, C_{T}, allowing it to charge. When voltage across C_{T} exceeds the voltage at pin 6, or is more than $2 / 3 \mathrm{~V}_{\mathrm{CC}}$, the state of op-amp A changes and a high appears at its output. (The output from op-amp B went low immediately after the trigger pulse was completed.) That brings \bar{Q} high, the output at pin 3 low, and the discharging transistor is once again turned on to discharge the timing capacitor.

The time it takes for the capacitor to charge and trip the circuits is $1.1 \mathrm{R}_{\mathrm{T}} \mathrm{C}_{\mathrm{T}}$ seconds. During that time, voltage at the

FIG. 10-THE STATE OF RY1 is controlled by S1 and S2-pressing S1 closes the relay while pushing S2 opens it.
output is high. It stays there until the charging period has been completed. The capacitor is then discharged, the output becomes low, and the circuit awaits the next negative pulse to start the next timing cycle.

The charging cycle of the capacitor can be disturbed only by placing a low voltage pulse at the reset input of the IC, pin 4. That pulse turns on transistor Q2, which, in turn, turns on the discharging transistor. If the reset terminal is not to be used, it should be connected to a fixed high voltage such as the $+\mathrm{V}_{\mathrm{CC}}$ supply.

Latching relay

Circuitry can be built around a mechanical relay so that its operation is controlled by a pair of momentary switches. Closing one switch closes the relay and closing the second switch opens it. A transistor circuit that can be used to accomplish that goal is shown in Fig. 10. When S1 is pressed, current flows through the the relay's coil and the contacts close. When S2 is pressed, the current ceases to flow and the contacts open. Of course, a normally closed relay could be used in place of RY1; in that case the action of the relay is reversed.

Let's start our look at the circuit by assuming that S2 has been pressed for an instant, thereby opening the circuit to the base of Q1. No current flows through it or through Q2, so that the supply voltage, $+\mathrm{V}_{\mathrm{CC}}$, is at the collector of Q 2 . This voltage is there because, in the absence of current, there is no voltage drop across the coil of the relay. The high voltage at the collector of Q2, and hence at the base of Q3, turns on the latter transistor. Collector current through Q3 is limited only by R3. Because of the voltage drop across R3, there is close to 0 volt at the collector of Q3. That is fed back and causes 0 volt to also be applied to the base of Q1, keeping both Q1 and Q2 turned off so that current does not flow through the relay coil.

Current will flow through the relay coil after S1 has been pressed momentarily. When that is done, $+\mathrm{V}_{\mathrm{CC}}$ is applied for an instant to the base of Q1. That turns on Q1 as well as Q2. Because Q2 then conducts, current flows through the relay coil. A voltage, very close to zero, is at the collector of Q2 due to the voltage drop across the transistor. That is also applied to the base of Q3 but is insufficient to turn that device on. The collector voltage of Q3 is high because there is no voltage drop across R3. That relatively high voltage is applied through D1,S2, and R1, to the base of Q1, keeping it and Q2 turned on.

Multivibrators

Two switching transistors are used to form a multivibrator. In their stable states, one transistor is turned on and one is turned off. The purpose of a multivibrator is to switch (and possibly even keep switching) the stable states of the two devices. To accomplish that, positive feedback is placed around the two transistors so that the circuit becomes unstable. That instability must be present if the states of the transistors are to be interchanged.

There are three basic types of multivibrator circuits. In one of those, the bistable multivibrator, both transistors are in stable states-one transistor is on and the second one is off. When a pulse is applied to the circuits, the states of the device reverses. The transistors remain in their new states until another pulse is applied; that once again reverses the states of the devices.

The second group of multivibrators are monostable. Here, the two transistors assume specific states, depending upon the circuitry. States are interchanged after a pulse has been applied but they do not remain indefinitely in those new states. After a period of time, the transistors in the monostable multivibrator revert to their original states. The time they remain
in the switched state depends upon a time constant in the circuit.

The last group of circuits are referred to as astable multivibrators. In those circuits no pulse is required to cause the transistors to change states; they do so continuously.

Bistable multivibrator

A bistable multivibrator circuit is shown in Fig. 11. Assume that when power is applied Q1 is on and in saturation while Q2 is turned off. If that is the case, the collector of Q1 is at about ground potential while the collector of Q2 is at $+\mathrm{V}_{\mathrm{CC}}$. Transistor Q2 is kept off because no current is supplied to its base through $\mathrm{R}_{\mathrm{F}} 2$; that's because of the 0 volts at the collector of Q1. At the same time, the $-V_{B B}$ supply is applying a reverse bias voltage to the base through $\mathrm{R}_{\mathrm{B}} 2$. Transistor Q1 is kept turned on despite the fact that the $-\mathrm{V}_{\mathrm{BB}}$ supply is applied to its base. That is because there is a current flowing through $\mathrm{R}_{\mathrm{F}} 1$; that current is due to the voltage at the collector of Q2. The states of Q1 and Q2 are interchanged if a negative pulse is applied to the base of Q1 to turn it off while Q2 gets turned on. After that, the transistors remain in their newly acquired states. A similar change of states can be accomplished by applying a positive pulse to the base of Q 2 to turn it on.

For the circuit to behave as described, several design criteria must be satisfied.

1. The values of $R_{C} 1$ and $R_{C} 2$ (as they are identical we'll simply refer to their value as R_{C} from now on) must be less than $\mathrm{V}_{\mathrm{CC}} \mathrm{I}_{\mathrm{C} \text { (sat). }} \mathrm{I}_{\mathrm{C} \text { (sat) }}$ is the minimum saturation current of the transistor.
2. Assume that $R_{B} 1=R_{B} 2=R_{B}$. To keep the off transistor in that state, $V_{B B} / R_{B}$ must be greater than the leakage current, $I_{\text {CBO }}$, of the off transistor at the maximum temperature at which it is to be used.
3. Assume that $R_{F} 1=R_{F} 2=R_{F}$. For the transistor to be in saturation, beta multiplied by R_{C} must be greater than R_{F}. The Beta of both transistors should be about the same.
4. To keep the on transistor in saturation, the base current must be

$$
\frac{I_{C \text { (sat) }}}{\beta\left(\frac{V_{C C}}{R_{C}+R_{F}}-\frac{V_{B B}}{R_{B}}\right)}
$$

Monostable multivibrator

A monostable multivibrator is shown Fig. 12. In that circuit, Q1 is kept turned on because the $+V_{C C}$ supply provides base current to that transistor through $\mathrm{R}_{\mathrm{B}} 1$. Transistor Q 2 remains off because of the negative voltage applied to its base from the $-\mathrm{V}_{\mathrm{BB}}$ supply. Those states are interchanged after a negative pulse has been applied to the base of Q1. When such a pulse is applied, Q1 is turned off and the voltage at the collector jumps to $+\mathrm{V}_{\mathrm{CC}}$.

FIG. 11-A BISTABLE MULTIVIBRATOR can remain in either of two states for an indefinite period of time.

That voltage is applied to the base of Q2 through $\mathrm{R}_{\mathrm{C}} 1$ and R_{F}, turning that device on. Transistor Q2 remains on until after capacitor Cl has had time to discharge through Q2 and R_{B} 1. The time that Q2 remains on, is equal to about $0.69 \mathrm{R}_{\mathrm{B}} 1 \mathrm{Cl}$. After that time, the transistors return to their original states.
For this circuit to perform properly, the following circuit details must be satisfied.

1. Q1 is on when $V_{C C} / R_{C} 1$ is greater than $\beta\left(V_{c c} / R_{B} 1\right)$.
2. From the transistor's specifications, determine the saturation voltage, $\mathrm{V}_{\mathrm{CE}(\text { sat) }}$, of Q2. If that information is not available, assume it to be 0.5 volt for a small signal transistor and 2 volts for a large power device. Use intermediate values for intermediate size devices. The base-emitter voltage, $V_{B E} 1$, due to $V_{C E(\text { sat) }}$ is $V_{C E(\text { sat })} \times R_{B} 2 /\left(R_{F}+R_{B} 2\right)$. The base-emitter voltage, $\mathrm{V}_{\mathrm{BE}} 2$, due to the $-V_{B B}$ supply, is $-V_{B B} \times R_{F} /$ ($R_{F}-R_{B}$). Q2 is off when $V_{B E} 1+V_{B E} 2$ is negative.

Astable Multivibrator

The multivibrator behaves as an oscillator when used in an astable circuit. In that arrangement, both transistors are usually in identical circuits with the collector of one transistor coupled through a capacitor to the base of the second. The states of both devices keep changing from on to off, and back again, at a fixed rate. A basic arrangement of an astable multivibrator is in Fig. 13.

FIG. 12-A MONOSTABLE MULTIVIBRATOR has only one stable state.

FIG. 13-AN ASTABLE MULTIVIBRATOR Changes states continuously.

Start by assuming that Q1 is turned fully on and is in saturation while Q2 is off. Because the collector of Q 2 is at $+V_{C C}, C 2$ charges to just under $+V_{C C}$, with the polarity as shown in the diagram. (The curved side of the capacitor represents the side at the lower potential.)

Capacitor Cl was charged, with the polarity as shown, during the previous halfcycle. When Cl is discharged, a base current flows in Q 2 due to the current flowing through $\mathrm{R}_{\mathrm{B}} 2$; the current in the resistor is caused by $+V_{C C}$. The presence of a base current turns Q2 on, putting its collector as well as the positive side of C 2 , at ground potential.

Because the voltage across C2 has the polarity shown, the base of Q 1 is placed at a negative voltage with respect to ground. That turns Q1 off. While Q1 is off, Cl charges, with the polarity shown, to just under $+\mathrm{V}_{\mathrm{CC}}$, just as C 2 did when the transistors were in their previous states. In the meantime, C 2 is being discharged through $R_{B} 1$ so there is no voltage left across C 2 and thus none applied to the base of Q1. Transistor Q1 is turned on because the only major factors that now affect its base current are $+V_{C C}$ and $R_{B} 1$. Transistor Q2 is turned off because of the negative voltage at its base. It is negative because the positive end of Cl is at ground potential after Q1 has been turned on.

The process continues without a stop. The time for switching from one state to the other is $0.69 \mathrm{R}_{\mathrm{B}} 1 \mathrm{C} 2$ or $0.69 \mathrm{R}_{\mathrm{B}} 2 \mathrm{C}$ 1. If $R_{B} 1$ is not equal to $R_{B} 2$ and $C l$ is not equal to C 2 , then the time in which the transistors are in alternate states differ. Should $\mathrm{R}_{\mathrm{B}} 1=\mathrm{R}_{\mathrm{B}} 2=\mathrm{R}_{\mathrm{B}}$ and $\mathrm{Cl}=\mathrm{C} 2=\mathrm{C}$, both switching times are identical. Fully symmetrical squarewave cycles will then be seen at the collector of either Q1 or Q2. The period of the full cycle is $1.38 \mathrm{R}_{\mathrm{B}} \mathrm{C}$ and the frequency will be $1 / 1.38 \mathrm{R}_{\mathrm{B}} \mathrm{C}$.

More switching devices

In this article, switching circuits using bipolar transistors, FET's, and IC's were described. But there are other semiconductor devices designed to perform as switching devices. Those include UJT's, SCR's, PUT's, and so on. Those and similar devices will be discussed in our next article.

R-E

Business Sotware

Abstract

You've finally decided to computerize your small business. Now you have a computer, but no software to run. Let's take a look at the features of some programs to help you decide what you need.

Small Budget Business Software

HERB FRIEDMAN

IN RECENT MONTHS, THE TREND OF BUSINESS-RELATED SOFTware has been to the all-inclusive computer program. The way most of the computer shops tell it now, the best software is a big, accounting program that costs upwards of $\$ 1500$, or integrated (multi-function) software that serves as a database, word processor, electronic spreadsheet, communications package, and heaven knows what else. And if an integrated package still won't meet your needs, they are ready to sell you a super-duper program that will let you write virtually any kind of imaginable database system.

While multi-function software and database generators are very nice to have, they are not only expensive, most are so complex it can take weeks or even months to learn how to use them. In fact, the heavily advertised, consumer-recognized, and expensive d Base $I I$ is virtually a high-level programming language that needs an almost equally expensive software package as an intermediary so that the average user-the non-programmer-can write a database using it.

Having all the records in one gigantic database isn't always the easiest way to do things, particularly for the individual entrepreneur who has enough trouble finding time to take care of business, let alone spend hours keying data into a computer. As a general rule, many small electronics-related businesses can get along with much lower-cost and less complex software by using the computer solely for the most difficult jobs. In many instances, individual specific-function programs are less expensive and more convenient to use.

To illustrate the kind of feature that's available in relatively inexpensive software packages for the small businessman, we'll look at some of the best software we've recently had a chance to
try. We make no recommendation that they are the best available; they simply have so many decent and often unusual features, they may give you-the typical Radio-Electronics reader-a good insight to the particular type of software that will work best for you.
Don't skip over some of the software we'll cover because " ...you know it's the wrong format for your computer." Keep in mind that most software is now available in many formats: much software that used to run only on Radio Shack computers is now available in CP/M, PC-DOS and MS-DOS, and vice versa. And if it's not available in your computer's disk format there might be conversion software that will permit your computer to run alien software. For example, File-Tran by Business Micro Products ($3111 / 2$ 8th, Suite 400, Glenwood Springs, CO 81601), will convert just about any CP/M or TRS-80 $51 / 4$-inch format to that of the Osborne I computer (data files and BASIC programs), while UniForm, by Micro Solutions, Inc. (Suite 19113, 1608 El Paso Rd., Las Cruces, NM 88001), will not only do the same for the Kaypro II; it will also record CP/M Kaypro files in the format of other computers. And by the time you read this, there will probably be "conversion" software for PC-DOS software, MS-DOS, etc. So it's a good chance that the type of software we cover will be available for your computer. And if you don't have conversion software, many software houses will "PIP" the software to your computer's format.

Small packages, large power

For the electronics service shop dealing primarily with consumer appliances such as TV, Hi-Fi, air-conditioners, etc., there's usually no need to computerize the accounts receivable

9.1DEMTIFICATIOH CODE	690-1234-		
2.DESCRIPTIOH	RESISTOR 270		
3. VEMDOR'S ITEM Mo.	HS-1245	4.VENDOR ID	MSQuE
5.DEPARTMEMT	ENG	6.LOCATIOH	
2.UMITS	EAC	8.UEIGHT	
9.LAST P.0. Mo.	12217	18. LAST P.0. DATE	01/03/83
II. DEL IVERY DATE	92/85/83	12.ITEMS IN STOCK	
13. Ho. OH ORDER	308	14.No. OM RESERVE	75
15. REORDER LEVEL	158	16. REORDER CUAMTITY	388
17.1TEIS SOLD P-to-d	178	18. ITEMS SOLD Y-to-D	588
19.LATEST COST	\$8.03	29.aVERAGE COST	39.03
21. SELLING PRICE	50.23	22. AL TERMATE PRICE	\$0.08
23. SALES P-to-D	\$39.18	24.SALES Y-to-D	\$115.80

CHRMGE UHICH FIELD (TYPE 〈 3) UHEN CORRECT) -
THE INQENTORY SCREEN of Versa-Inventory when you enter the information for a single item is shown here.
because most work is paid for cash-on-delivery; there are probably only a handful of jobs on open account or credit. Similarly, there's probably no need to computerize accounts payable because the shop deals with maybe a handful of distributors. Most likely, the primary need is for computerized inventory control: simply knowing how many widgets are in stock, what's the re-order limit, and maybe how many widgets were used last month, or last quarter, or last year; and where in heck you store the stuff you have. (Micro-widgets are hard to find if you don't remember where you put them.)

That kind of inventory system doesn't require an expensive database generator nor weeks of programming and debugging. Some notably good inventory systems are available in the range of $\$ 50$ to $\$ 150$. For example, a system such as Versa-Inventory, from Computronics, Inc. (50 N. Pascack Rd., Spring Valley, NY 10977), is probably better than the average computerist could write with a database program. It will print reports showing the part description, the vendor's item number and ID, the department or equipment it's used in, where the part is stored, two levels of selling price (wholesale or retail), actual stock, items on hold, items on order, and the reorder level. And it will print period-to-date and year-to-date reports on sales, cost, or whatever.

The number of inventoried items is determined by the size of the disk drive; for example, the 500 K disk of a TRS-80 Model $I I$ computer will accommodate about 4000 individual items.

The amount of information that the program can print in reports is awesome when you consider it comes from a relatively inexpensive program. It might take days, weeks, or months of work to create that kind of report structure using an expensive database generator.

Versa-Inventory runs under MBASIC (Microsoft BASIC), which must be supplied by the user. MBASIC is indigenous to Radio Shack computers, and is available for most popular CP/M computers.

Another program that doesn't have to be integrated with a giant database is the mailing list. MicroMailer, from MicroVentures, Inc., is an example of the kind of thing that delivers the maximum bang-for-a-buck for a service shop's mail campaign. How? By outstanding utilization of identifiers.

An identifier is a code embedded in a mailing-list record that helps identify the person. As a general rule, mailing lists will accept several one, two, or three character alpha or numeric codes that stand for something. Perhaps the letter "A" would mean "Purchased a TV," or "ANT" might mean "Installed an antenna," etc.

MicroMailer, however, permits up to seven multi-word identifiers for each person, such as "VCR SERVICE CONTRACT," or "TUNER REPAIR 1983." It keeps track of the identifiers and automatically plugs in the correct date each time the identifier is used. It will even attempt an identifier match when printing labels. For example, if one identifier is VCR, meaning the person purchased a VCR from your store, it will flag this person and ask if you want their label if you are running a mailing list of people with a "VCR SERVICE CONTRACT."

If you send periodic mailings to your customers, the identifiers will strip out precisely the information you want; it can tell you whose service contracts are expiring, who purchased what appliance, who had warranty repairs, etc. You can prepare the mailing record at the time of each sale or at the end of the day. At the time of record entry you can not only key in all relevant identifiers, but even the salutation for a form letter, such as "Dear Ms. Austin:,'" or "Dear VCR Owner," or "Dear Jim."

You can sort on just about any field or identifier, have a wide assortment of label styles to choose from when printing-even design your own-and you can even convert the data into the correct format for a WordStar mail-merge. And in case you can't keep track of who your customers are, it will search for duplicate mailing list entries by address and name.

While MicroMailer isn't necessarily the best mailing list for small businesses, it gives you a good idea what to look for your own use.

Create your own forms

Let's assume you have a need for a program that allows you to create a precise format for a filing system and that there's no inexpensive program that does precisely what you want. Let's say you want to catalog a record or tape collection in your own way: you would like to design screen displays and the printing formats yourself. OK-there's an inexpensive program for that, too. It's by Swan Software and it's called File It.

File It is a sort of mini-database generator that's particularly well suited for catalog-type files. It allows you to write your own screens and printout formats without days or perhaps weeks of training. The program is relatively inexpensive, but works quite nicely if you are aware of some of its limitations. For example, its high speed sort is only on the "key"' field, the "key"' being the first field-which should be a "catalog number." While it can search rapidly on the key field, search and sorts on other fields can be relatively very slow. The user must work it out the way that works best for him.

File It searches can be by date, math operators such as $<$ (less than) and $>$ (greater than), equal, not equal, limits, specific numbers, match and not match, forced match, etc. While File It is really a miniature database system, it's easy to learn and use; the busy technician can learn it in a couple of hours and do some heavy customized design before the evening is out.

Automatic check printing

If your business or interest requires writing a stack of checks at the end of the week or the beginning of the month, or you're trying to keep the personal expenses separate from the taxdeductibles, then some form of electronic checkbook program will make the paperwork a little easier. There's a junior, intermediate, and sophisticated version of checkbook programs for every computer, from the least to most expensive. The

MICROMAILER builds its identifier list in English phrases until it eventually runs out of disk space.
trouble is that most are oriented for home use and don't have the muscle for commercial records. An exception to this rule is Bookkeeper by Chuck Atkinson Programs.

Bookkeeper is an electronic checkbook system that seems almost tailor-made for the small business person who periodically writes an unusually large number of checks for either personal or business expenses. It not only keeps a balance account of the checks, it actually writes them, catalogs them, and distributes them into individual tax-deductible and nondeductible expense categories. There are 50 deductible category codes: Codes 1 through 32 are pre-named; 33 through 50 can be named by the user. Codes 51 through 98 are pre- and user-named non-deductible expenses. The last code, No. 99 , is used to split a check up to four ways; the amounts are added to the proper expense categories.

Bookkeeper even remembers the last person to whom a check was issued, and will automatically print the recipient directly on the check if desired. For example, assume the printer is loaded with "tractor-feed" blank checks and the user writes a check to the local telephone company. The program has remembered the name of the telephone company, and when the amount is keyed in, the check is automatically printed with the amount and company name. Just as a checkbook, Bookkeeper will accept data entry on deposits and withdrawals, keeping a running account of the balance. There is even provision for manually correcting the information to accommodate bank fees and out-of-pocket cash expenditures. In addition to printing the check itself (using standard tractor-feed checks), it will prepare pay checks; provide a check register; list outstanding checks; provide a listing of check registers by alphabet, expense code, or deposits; and provide lists-of-cash summaries by date, by reference, code, credits, cash analysis, and expenditures.

Hide and seek

Do you need to store and selectively retrieve information of any kind, such as what magazine had what article? What page it was on? Where did you put the schematic of the signal generator you purchased from the Army 10 years ago? Who will volunteer their services for your favorite charity? There are almost as many 'datafile" programs as there are checkbook systems and word processors. Most do more or less the same thing in similar ways: you put the information in and the software lets you find it by looking for key words. The problem is, most electronic filing systems require precise information; if you misspell a word, enter an extra character-even a space-the computer will reject your search.

However, an electronic filing system such as Cardfile from Digital Marketing (2363 Boulevard Circle, Walnut Creek, CA 94595) will ignore your mistakes as long as you don't try to deliberately fool the computer. It will dig out your information if all you can remember is a few letters of a single word. Basically,

FILE IT is a database that allows you to create your own screen formats. This sample was for a tape library.
its search is similar to the electronic file index of computerized libraries.
Cardfile works this way. There are four fields. They can be used for any type of filing system because the program permits the user to create individual prompts for the fields. For a book file, the fields might be: "Subject," "Title," "Author," "Text," To keep a file on your music library, you might have prompts for the composer, title, artist, and for comments. Each set of prompts can be named so it is maintained as an individual file, and there can be several files on a disc. The information is literally poured in when creating the file. To search for any information you simply key in as much as you know for one or any of the four fields. The program searches the specific file reserved for the prompts and comes up with the data.

Now suppose you're not too certain of what the data is. Assume that a long time ago you stored information on a Kurtzweil reading machine, an optical scanner/computer that reads books to the blind. You don't recall how to spell Kurtzweil. The best you can do is Kurt. That's all you need for Cardfile. The search will take a little longer but Cardfile will find the entry. As long as you don't enter an erroneous string (fooling the computer) the program will locate your data record. The more words and descriptions, or partial words, the faster the search. If you wanted to locate a magazine article on transistor oscillators and you could not recall how to spell either word, simply keying in as much as you know, say, "trans" and "osc,", will find it faster than just the single string "trans" or "osc."
The amount of information you can store in the low-cost electronic file programs varies from as low as six lines of 32 characters to almost 100 lines of 80 characters. As a general rule, the quantity is not as important as how easy it is to retrieve the data.

The do-anything database

Eventually, everyone wants a DBMS, a DataBase Management System. That's a system of storing information in selected fields that can be interrelated in any order by the user. A DBMS can hold all the information on your business or other interests: the names and addresses of your customers, your suppliers, your inventory, accounts receivable and payable, the general ledger-anything you want. You then create screens (video monitor displays) that allow you to enter or retrieve only the specific data for a given purpose. For example, suppose you have created your own inventory system with perhaps twenty fields, everything from the part number to the name and address of the supplier to a complete set of purchase order records. If desired, the DBMS will use the purchase-order data to calculate the average costs for any time period. The DBMS will do this for you because you set up the fields and their relationships any way you want.

To make life easier for you when a customer comes in, you
would like a TV monitor display of only the part item and description, the quantity in stock, and the selling price. It's simple: you just create a screen display that selects only those fields from the database, and you create the screen layout exactly as you want it. Normally, you can create several different screens for a DBMS, just as you can create several different formats for printed reports. As a matter of fact, the DBMS can run the cash register. When you sell an item, keying it into the database will automatically calculate the cost and update the inventory; and if you entered the customer's name and address, enter the information for use in billing, mail campaigns, warranty records, or whatever.

The potential power of a DBMS is enormous, which is why many are virtually complete programming languages unto themselves, often extremely difficult to learn and use. For the nonprogrammer who needs a powerful database but doesn't have the time, energy, or inclination to learn programming, there are two outstanding DBMS systems that can be learned in a couple of evenings, and even mastered within a week. The first is almost a legend because someone with the barest of knowledge about computers can create quite sophisticated database systems without too much trouble. It's Radio Shack's Profile III + for their Model III and 4 computers and its sister program Profile Plus for their Model II computer. While not the most powerful DBMS by any means, its level of sophistication is extremely high-yet it is created by on-screen menus rather than programming statements or free-form creating on the screen. Profile's capabilities are much too extensive to describe here; basically, if you can think of it Profile will probably do it. Third-party enhancements add even greater power to Profile. For example, the program will sort or search on up to four fields. However, the people that wrote the program for Radio Shack, The Small Computer Company, Inc. (230 West 41 St., Suite 1200, New York, NY 10036), have a set of enhancements for both versions of Profile that make them almost standards of excellence, or at the least, reference standards to which others are compared. One enhancement allows selection by up to sixteen criteria, and then sorts on up to five of those. Another allows the preparation of forms such as shipping invoices-with graphics no less. Still another allows you to rearrange a screen without having to re-do the database. There are data-transfer enhancements, cross references, and a whole series of other easy-to-use but complex functions. If you go for either version of Profile, find out what enhancements are available from the people who wrote the programs.

One final note on Profile III + . The documentation is good, but not great; there are some sections which are a bit confusing. A third-party outfit called Crest Software (2132 Crestview Drive, Durango. CO 81301) publishes a set of notes, called Plus Explained, that clears up virtually all the rough spots in Radio Shack's manual. If you use Profile III + it's the best $\$ 14$ investment you can make.

The second user-friendly DBMS is Super, from the Institute for Scientific Analysis (Dept. M-3, Box 7186, Wilmington, DE 19803). It is available for TRS-80 Models I and III using NEWDOS, LDOS and DOSPLUS operating systems, for Model II, III, and 16 under the TRS-DOS operating system. Versions are also available for CP / M and IBM-PC.

A menu-driven DBMS, it is offered as competition for d Base II, not Profile. The reason appears to be that Super's structure is intended specifically for business. It's oriented towards ease in setting up customer files, depreciation, cost accounting, accounting systems, and manufacturing control. Most important, it will integrate with word processors such as WordStar, Scripsit, and Newscript. It, too, is jam-packed with features; you really must send for a descriptive brochure to see if it meets your needs because it sets up a rather sophisticated database and report generator.

Unlike Profile, which can be handled by a beginner, Super requires some knowledge of what goes into a DBMS because the documentation often leaves a lot to be desired. At times it is pedantic (deadly dull reading); other times it assumes you know too much. There aren't enough illustrations, and what there are
are not where they should be-accompanying the associated text. Also, screen formatting for reports is not menu-driven and is relatively difficult and frustrating; our CP/M version in no way conformed to the documentation. Perhaps that was a result of the conversion process from the TRS-DOS format to CP/M. Whatever the reason, it needs much superior documentation.

Essentially, Super would be an excellent DBMS for the beginner and non-programmer if the manual were somewhat improved. Most likely, if the program becomes popular, someone will come out with a special 'how to use Super'" manual, much like the insert notes for Profile. With or without the extra documentation, Super is still a good DBMS for the small businessman.

Itty-bitty programs

We have gotten into some pretty heavy stuff with our database-management systems, so I'd like to close with an absolute dynamite program, actually 100 programs in all; one of the best software packages for a small business even if you don't use the computer for any other purpose.

This software package is called Business Pac l00, from Computronics, Inc., and it's available for just about every popular computer. Pac-l00 consists of 100 ready-to-run BASIC programs, all of which are the kind you often need, and would write yourself if you had the time or programming expertise. They run under Radio Shack's version of BASIC or MBASIC. (The programs were originally written for the Radio Shack computers.)

The 100 programs encompass virtually every financial calculation needed by a business, from calculating the apportionment of interest, to calculating the future or present value of an investment or compound interest, to calculating the value of a bond or an annuity. It will calculate how much your children's educational fund will be worth when they go off to college, determine the NPV (Net Present V alue) of a project, and the effects of inflation. There is even an electronic version of the Dome business bookkeeping system.
And away from straight calculations, there are programs to print multiple labels of any kind, keep an in-memory mailing list (great for small lists of a few hundred names), and prepare shipping labels. There's a letter-writing system that interlocks with its own mailing list, a computerized telephone directory, a UPS-zone-from-ZIP-code directory...it just goes on and on. There are 100 of the greatest mini-programs, and it comes with excellent documentation. Every program is described on its own page(s), and is listed in alphabetic order. As we said, it's exactly what you would do for yourself.
The one problem is the conversion from the original Radio Shack BASIC to MBASIC. Radio Shack's Microsoft BASIC can handle a statement such as "GOTOI50." Note there is no space between "GOTO" and "150." MBASIC, however, requires the space; the statement must read "GOTO 150." In a few programs we found that the conversion from Radio Shack to MBASIC missed a few GOTO statements and there were no spaces; the program crashed. MBASIC will crash on the line with the problem so you can go directly into the EDIT mode and insert the space. Or you can LIST the program and check all statements for the proper GOTO. PAC-l00 programs are not protected; you can modify them, make copies, do whatever you want.

We've covered a lot of ground in our trip through software for small businesses. As we stated earlier, the purpose was not to recommend any specific software, but rather to illustrate the many features (and some of the problems) in some of the best or most convenient software we used.

Keep in mind that software doesn't come cheap; it starts to add up a hundred dollars here, a few hundred there. Before you know it the software has cost more than the computer. Perhaps some of our illustrations will assist you in keeping software costs at rock-bottom. When in doubt, remember the adage: "If it works well on a 3×5 file card, a computer probably won't do it any better."

R-E

BUILD YOUR OWN ROBOT！

Send today for your 52－page（ $81 / 2 \times$ $11^{\prime \prime}$ ）booklet containing complete re－ prints of all eleven articles in the Build Your Own Robot series by Jim Gupton．

This all－inclusive reprint gives you all the data you need to build your own Robot．

TELLS EVERYTHING YOU NEED TO KNOW to build the Unicorn－1 Robot without the need for an engi－ neering degree or special equipment．

The robot is fully mobile with minipu－ lator arms to grasp，lift and carry．
－MANIPULATOR ARMS and end－ effectors（hands）are what enable the robot to perform useful tasks．Details of construction techniques and con－ siderations are fully explored．

回 MOBILITY BASE is not a lunar space station．It is the drive system that permits the robot to move from here to there．Full construction de－ tails along with a discussion of power sources is included．

THE BODY－FRAME AND ROTA－ TION MECHANISM．This is the part that makes Unicorn－1 look like a ro－ bot．Wood and Formica are the ma－ terials for the body．Motors and gears are what make it function．
－COMMUNICATIONS．How you can tell your robot what to do．Prepro－ gramming techniques．．．．radio control ．．．．computer control are all detailed．

SENSORS．How to add sensors so your robot doesn＇t bump into things．

Electronios．
Robot Reprints
200 Park Ave．South
New York，N．Y． 10003

I want to order \qquad reprints＠$\$ 12.00$ plus $\$ 1.00$ postage and handling for U．S．，Canada and Mexico． Add 96c sales tax for New York State residents only． U．S．Funds only． I want to order \qquad reprints＠\＄12．00 plus $\$ 3.00$ Air Postage and handling for all other countries． U．S．Funds only．

Please print	RE184
（Name）	
（Street address）	
（City）	（Sin）

HOBBYCORNER

Multiplexed readouts

EARL "DOC" SAVAGE, K4SDS, HOBBY EDITOR

IF YOU EVER INTEND TO BECOME INvolved in repairing, modifying, or building a device that has a readout with several digits, you should have a clear understanding of the principals of multiplexed displays. Consider, for instance, a letter we recently received. One of our readers, Gerry Vrbensky (Nova Scotia, Canada) wants to use larger readouts as an external display for his calculator but is having some problems with his modification. Our guess is that it's the multiplexed circuit that is causing the confusion.

FIG. 1
Figure 1 shows a typical non-multiplexed display. Here, each LED readout has its own decoder/driver. There is no

AN INVITATION

To better meet your needs, "Hobby Corner" has undergone a change in direction. It has been changed to a question-and-answer form. You are invited to send us questions about general electronics and its applications. We'll do what we can to come up with an answer or, at least, suggest where you might find one.

If you need a basic circuit for some purpose, or want to know how or why one works, let us know. We'll print those of greatest interest here in ""Hobby Corner." Please keep in mind that we cannot become a circuit-design service for esoteric applications; circuits must be as general and as simple as possible. Please address your correspondence to:

Hobby Corner

Radio-Electronics

200 Park Ave. South
New York, NY 10003

FIG. 2
sharing of circuits or components except, of course, the carry-over signal to the next counter IC. That is the type of schematic you will find in most construction articles that involve displays. It is straight-forward and easy to understand.

Figure 2 shows the block diagram of a typical multiplexed display such as the one you might find in a calculator. For clarity, only two readouts are shown. Note that there is only one decoder/driver regardless of the number of readouts used. That's possible because of the multiplexer, shown here as two separate switches and an oscillator.

Let's see how that circuit works. The oscillator serves as both a timing and triggering device. (That is, it synchronizes the switches as well as causing them to open or close.) Switches S1 and S2 simultaneously select one readout and its associated counter. The signal from the selected counter is applied to the decoder/ driver, where it is converted and passed on to the appropriate segments of all the displays. But only one display lights-because only one display is connected to the supply voltage at a time (through S1). Now a second counter and its readout are selected by the switches, the signals are processed in the same manner, and so on. The process continues and all readouts are
lighted sequentially. The same sequence is repeated again and again. But you don't see the digits flicker-instead, the readouts appear to be lighted constantly because of the very rapid switching action of the multiplexer circuit.

Thus, you can replace all but one decoder/driver in a non-multiplexed display circuit with one oscillator and two switching arrays. Say, for example, you are building a display that is to have 12 digits in the readout. Using the non-multiplexed method, 12 decoder/drivers would be needed. But if that same circuitry is multiplexed, the number of decoder/drivers can be reduced to four. That's a substantial savings when you're trying to cut costs in order to be competitive and/or make a smaller device.

Also, don't be confused if you find far fewer IC's in your calculator (or clock) than you expect. Very often, the oscillator, selectors, and decoder/driver are built right into one IC package. So, if you understand Fig. 2 and are able to trace out the wiring to the digits, you can easily determine what is going on in the circuit. That information should enable you to attach that larger readout to your calculator, or at least get you on the right track. Good luck, Gerry.
continued on page 93

HOBBY CORNER

continued from page 88

Tilt switch

Donald Wendel（TX）is looking for a device to detect a tilt from the vertical． Unfortunately he didn＇t mention the in－ tended application，so we don＇t know if a simple switching arrangement will suf－ fice－or if the device is to be used to determine the degree of tilt．So we＇ll take a look at both．

Let＇s consider the switching device first since it＇s the simpler of the two．The easi－ est approach would be to use a mercury switch such as the＂position－determin－ ing＂type available from Radio Shack．If you can＇t get those，several standard mer－ cury switches can be arranged so that the contacts close whenever they are moved from the horizontal．

A second possible switching arrange－ ment is one that you can build．It consists of a hanging metal wire（braided for flex－ ibility）with a weight on the free end．The wire hangs through a metal ring，as shown in Fig．3，and completes a circuit when it touches the ring．The size of the ring and its distance from the supported end of the wire can be adjusted to increase or de－ crease the sensitivity of the device．

If the device is to show the degree of

tilt，that complicates matters consider－ ably．One method that comes to mind uses a joystick（the kind that use potentiome－ ters，not the ones that contain switches）． The joystick is supported upside down and a suitable weight is attached to the handle． When the joystick（or the device it＇s at－ tached to）is tilted in any direction，the resistance of its potentiometer（which you can read on an ohmmeter）will change． That reading will be in direct proportion to the degree of tilt．One supplier of the type of joystick mentioned above is Jameco Electronics（ 1355 Shoreway Road Belmont，CA 94002）．Check the ads in the back of this magazine for other sources．

Perhaps another reader will come up with a better idea．If not，those sugges－ tions should get you going in the right direction．

DC to AC converter

It must have been the summer storms－
we have received several inquiries lately about building converters．The letters came from all over，including Puerto Rico and the Philippines．

The gist of those requests is for a con－ verter circuit that will produce 115 volts AC from a square－wave generator．The writers want to power everything from re－ frigerators to computers．Among the vari－ ous square－wave generators suggested are the 555 oscillator and the 5369 crystal oscillator．

Sorry fellows，but there＇s no way those oscillators can output enough wattage to operate those devices．That is，you cannot get both more voltage and current out than you put in．Electronics is no exception to the rule of life that says＂You never get something for nothing．＂

Many people mistakenly believe that some electronic circuits manufacture power．That＇s probably because they see circuits where you put a couple of volts in and get 5000 volts out．Or，perhaps，a circuit that outputs ten amps when the input is only 500 milliamps．But that doesn＇t indicate a change in power．Power is equal to the product of voltage and current．

So those devices that you might think are creating power are not．（Don＇t take our word for it，though．Take any device and compare the product of the input volt－ age and current and the product of the output voltage and current．We guarantee that at best you＇ll wind up with equal numbers．You＇ll actually get less power out than you put in．That＇s because the circuit itself will use up some portion of the input power．）

Low power oscillators（such as those mentioned）cannot handle the kind of power necessary to produce 500 watts at 115 volts（even though that＇s only 4.4 $\mathrm{amps})$ ．Remember－what we are dealing with are milliwatt devices．

There are two types of devices that are commercially available and can provide emergency power．One device attaches to the alternator of your car and reportedly produces 110 volts AC for operating radi－ os，drills，and so on．As to whether or not they would be satisfactory for powering TV＇s or a moderate size refrigerator，we have no idea．And it＇s likely that the out－ put will be to noisy for a computer．Be－ cause we have not had first－hand any ex－ perience with those units，we can＇t recommend them．

The other device that can produce the needed power is 12 －volt DC to 110 －volt AC converter or inverter．That device can pro－ duce an output of a couple hundred watts． But if more power is needed，you can simply use more than one unit．If you decide to go that route，expense will be a major factor．A device of that type－in kit form with an output of 175 watts－is available from the Heath Company（Ben－ ton Harbor，MI 49022）for about $\$ 55$. Several years ago we mounted a Heath unit in my car and used it successfully for
 and parts you need．．．plus full back－up ser－ I vice from Netronics！
I Complete instructions show you how to build an IBM－
IPC compatible that can run ANY－not just＂popular＂－ I PC compatible that can run ANY－not just＂popular＂－ I IBM－PC programs！
Motherboard functionally duplicates IBM－PC．．fea－ tures IBM－PC compatible BIOS ROM plus five empty I sockets for ROMs of your choice．Sockets will accept IBM－PC PROMs or other PROMs．

Instructions include step；－by－step procedure for transfer－ ring ROMs from a pc onto a floppy disk，which can then be mailed away for ROM duplication．
Board kits include printed curcuit board，some hard－ to－get parts，and detailed assembly instructions． Complete kits include printed circuit boards，all parts，and detailed assembly instructions．
Manuals only， 55.00 per kit
IBM－PC Compatible 16－bit Motherboard with IBM com－ patible BIOS ROM－\square Board kit，$\$ 89.95 / \square$ Complete kit，add $\$ 140.00$
IBM．PC Compatible Keyboard in cabinet（wired \＆ $64 \mathrm{k} / 256 \mathrm{k}$ Memo
64 k 256 k Memory with serial port with DB－ 25 connector Board kit（ 64 k ），$\$ 39.95$／Complete kit（ 64 k ），add $\$ 754.00$ Each additional 64 k block（to 256 k ），add I 575.00
I Four Drive Disk Controller with hard disk SASI inter－ I face，parallel printer port，clock／calendar－\square Board kit， \＄$\$ 130.00$ Parts for Four Drive Disk Controller，add I Clock／Calendar，add $\$ 45.00$ SASI Interface，add I $\$ 50.00$／$\square$ All 4 functions wired and tested，$\$ 329.95$ ． IBM－PC Compatible Color Board（or B\＆W）－Boar kit with ROM， $\mathbf{S 8 9 . 9 5 / \square \text { Wired and tested，} \$ 2 9 9 . 9 5 \text { ．}}$ Printer／Spooler Board with 64 k buffer clock calen PrinterlSpooier Board with 64 k buffer，clock calend
parallel ports－Board kit with ROM，$\$ 49.95$
Modem Board， 300 BPS，direct connect／originate／auto－ dial／auto answer plus 2 serial ports－\square Board kit with te－ lephone company connectors，$\$ 49.95$
Power Supply \square Complete kit，$\$ 179.95 / \square$ Extra power for hard disk option，add $\$ 20.00$
\square Cabinet for PC，steel with brushed aluminum front panel and simulated oak cover，\＄199．95
$\square 51 / 4^{\prime \prime}$ Disk Drive，DSDD（wired \＆tested），$\$ 269.95$ 10 Megabyte Hard Disk with controller \＆software 10 Megabyte Hard Disk
（wired \＆tested），$\$ 1295.50$ （wired \＆tested），\＄1295．50

TERMINALS

（Terminals require ASCII keyboard and power supply．） \square Power Transformer for either terminal， $\mathbf{\$ 9 . 9 5}$
SmartVid Deluxe Terminal， 80 characters by 24 lines，mi－ croprocessor controlled with editing，reverse video and video controller， 2 k system ROM），$\$ 99.95 / \square$ Complete kit， add $\$ 100.00$
FastVid Deluxe Terminal， 64 or 32 characters $x 16$ lines， baud rate to 19 kilobaud－Board kit（includes control－ ler，character generator，and PROM），$\$ 49.95 / \square$ Complete kit，add $\$ 50.00$

Electric Mouth SPEECH
Electric Mouth Apple／S－100 Speech Board，with
National NSC Digitalker speech chip－Apple／\square S－100 （Please check your choice．）／\square Board kit（with Digitalker and 150 word vocabulary set），$\$ 69.95 / \square$ Complete kit， add $\$ 30.00 / \square$ 2nd Word Set（ 150 words），add $\$ 39.95$
SpeakEasy Universal Talking Board，operates with computers and terminals or in the stand－alone mode．Uses same power supply as terminals（see above）．\square Board kit （includes VORTRAX speech chip and system ROM）， $\$ 89.95 / \square$ Complete kit，add $\$ 60.00$／Cabinet，add $\$ 15.00$

S－100 DYNAMIC RAM BOARD
$16 \mathrm{k} / 64 \mathrm{k}$ RAM Board uses popular 4116 chips－\square Board
kit （includes 8202 controller）$\$ 69.95 / \square$ Complete kit kit（includes 8202 controller），$\$ 69.95 / \square$ Complete kit

ELF II BEGINNER＇S PAK
ELF II is a complete 256 byte，fully expandable learning computer with excellent documentation that explains hardware and software fundamentals．Learn to program in machine language！Learn the essence of how all com－ puters operate and＂think If you can afford to think afford not to have an ELF II beginner＇s pak！＇Complete kit，$\$ 139.95$ COLL TOLI FREE 1.800 USE YOUR CREDIT CARD！CALL TOLL FR
$243-7428$（In Connecticut call 203－354－9375）
To order by mail，check boxes above for products you To order by mail，check boxes above for
desire．Mail entire ad with remittance to：
Netronics R \＆D，Ltd．
333 Litchfield Road，New Milford，CT 06776
Total enclosed \＄（Conn，res．add tax）\square Visa
\square MasterCard Acct．\＃
Exp Date＿＿Signature
Print
Address
City
State
Zip

Auplo Otr
 kirs

POWER AMPLIFIERS MOSFET

120 WATT

RMS (Mono)

ILP MOSFET power amplifiers are the logical choice for superb performance. compact size. excellent design, ease of assembly, and bargain prices! All models use famous ILP audio power amplifier modules, factory pre-assembled with bonded heat-sink and tested. Assembly is quick. easy. and assured Each model features an ILP toroidal power transformer: half the weight and size of conventional transformers, toroids are also much quieter. ILP MOSFET power amps give no-compromise state-of-the-art performance: frequency response 15 Hz $100 \mathrm{kHz}(-3 \mathrm{db})$, harmonic distortion $0.005^{\circ} \%(1 \mathrm{kHz})$. signal-to-noise ratio 100 db . slew rate 20 v ps. Each kit mounts into a precision die-cast aluminum chassis Like all ILP products. MOSFET power amp kits carry a five year limited warranty. Also available: MODEL UP60 60 watts RMS MOSFET amplifier $\$ 159.95$
Available direct and from selected dealers.
Write for details.
CALL TOLL-FREE TO ORDER 800-833-8400 In New York call (716) 874-5510.
Mail orders accepted. VISA, Mastercard or checks.
GLPDSTODE $E^{\text {Eectrowncs.mc. }}$
1585 Kenmore Avenue Buttalo, New York 14217
In Canada: Gladstone Electronics, Toronto 800-268-3640
CIRCLE 73 ON FREE INFORMATION CARD
a variety of purposes, including a ham transceiver (but not a computer).

Transformer direction

Steve Pearson (WA) attempted to build the high-voltage generator shown in "Hobby Corner" last February. His project was unsuccessful, apparently because of the transformer used. Let's see if we can lend a hand and help clear up some of the confusion.

Any transformer can be used as a stepup or step-down transformer (provided that the primary and secondary have an unequal number of turns of wire in them). If the transformer has a small number of turns at its input (primary) and a large number of turns at its the output (secondary), it is a step-up transformer. On the other hand, if you apply the input to the high-turns side, you have a step-down transformer. (The relationship between the number of turns of wire in a transformer's primary and secondary is referred to as the turns ratio.)

For example, take the case of a 110 -volt to 12 -volt transformer. If you apply 110 volts to one side and get 12 volts out the other, you are stepping-down the voltage. However, you can just as easily reverse the transformer so that the input side is now the output. A transformer can step up or step down the voltage that is applied to it depending on which side is used as the primary.

As far as the high-voltage generator is concerned, what you need is a transformer with very high turns ratio. A filament transformer, such as the one you used, doesn't step-up the voltage enough because it doesn't have a sufficiently high turns-ratio.

In these days of low-impedance transistor circuits, it has become increasingly more difficult to purchase transformers with a high turns-ratio. As pointed out last February, your best bet is an audio-output transformer designed for a tube receiver. Perhaps you can take on from an old radio or even a tube-type TV. If you do find such a transformer, apply the input to the side that was connected to the speaker and you should get a sufficiently high voltage from the other side.

Control-voltage source

Very often the solution to a problem is just a matter of using a circuit in a slightly different way. That's our advice to H.B. Armstrong (OH), who is looking for a way to control a relay with a signal from a tape recorder.

If you-look back at the July "Hobby Corner" you'll see a circuit that used the audio signal from a radio to turn a device on and off. That circuit can be used to turn on a light, activate a relay, or do almost anything when an audio signal is fed to it. Now, if we understood your problem correctly, all you have to do is to connect the same device across the audio output of your recorder.

R-E

This is for all those who ever wonder who runs the United Way.

This is Wally Behnke, Frank Cole, LindaThoren and Ken Smith. They're United Way volunteers. Just four of the many volunteers who help run the United Way in different communities across the country.

Volunteers who help raise funds. And, in turn, make the tough decisions of how the money can be put to the best use in their own community.

Volunteers like these are just part of the reason the United Way is so effective at meeting local human needs.

So that's who really runs the United Way. Your friends. Your neighbors. People just like you. And that's the way it should be.

Thanks to you, it works. for ALL OF US.

Ad

Council A Public Service of This Publication

THE DRAWING BOARD

More about counters

ROBERT GROSSBLATT

BEFORE STARTING OUR USUAL HEAVYduty discussion this month, we have a few announcements to get out of the way. So put your brains back in neutral and relax a bit, while we take care of them.

Last August's contest is officially closed. A lot of you out there sent in answers regarding the use of trimmers in the power supply we designed. The reasons you gave had to do with everything from electron flow to the price of resistors. Well, the correct answer is somewhere in between. Take a look at Fig. 1 to refresh your memory. R_{s} and R_{B} had to be 2-watt resistors - so the only kind of trimmers we could use were the wire-wound ones.

FIG. 1
The real question, then, is why couldn't wire-wound resistors have been used. Well, those two resistors have to pass a lot of current. Not only that, but if the circuit being powered by the supply suddenly draws more or less current, the voltage across the resistors is going to vary wildly from one moment to the next. Since wire-wound resistors are just long coils of resistive wire, inductive effects are definitely going to rear their ugly heads. More specifically, current spikes through the resistors are going to generate back EMF and that will momentarily change the apparent value of the resistors. As a result, all the protective circuitry for the supply, which we've spent so much time designing, would become ineffective at the exact time it's needed most. If the values of the resistors changed, the cutoff points we planned on would change. Take it from us: All the work we did would mean nothing and there'd be a good chance that the power supply would go up in smoke. An unsatisfactory state of affairs, to say the least!

And now we'll open the envelope and announce the winner of the contest.-It's Steve Geist of Des Plaines, IL. Congratulations, Steve. No prize money (we haven't been able to collect from the loser); just congratulations.

Our second announcement is that a lot of people out there have been sending in answers to another problem we outlined last August: namely, how to generate a negative supply from a two terminal transformer. Bill McFadden of Corvallis, OR not only sent us a solution, but also did a really good job of analyzing the circuit and explaining how it works. What he didn't send me was his return address. Maybe that's because we blew the prize money budget on the other contest. Seriously though-if you're taking the time to drop us a note, make sure to put your return address on the note, as well as the envelope, so we can answer you.

FIG. 2
Bill's final circuit is shown in Fig. 2. It could really come in handy when you're designing circuitry that needs a bit of juice from a negative supply. Its operation has all the hallmarks of a slick designsimplicity, elegance, and common sense.

Diodes D1 through D4 form a full-wave bridge rectifier and produce a positive DC voltage with respect to system groundnothing really unusual there. But, as you all should know, that positive DC voltage is generated on every positive half-wave of the incoming AC signal from the secondary of the transformer. What Bill did was to take advantage of the negative halfcycle of that signal. Capacitors Cl and C 2 charge up on the positive half-cycle of the input-as you would expect-and then dump their charges across diodes D5 to D8 on the negative half-cycle. Since C1 and C2 are always looking at signals that are 180° out-of-phase with each other,
none of the input is wasted (both sides are used). Capacitor C3 is the filter capacitor for the negative supply and Bill has indicated that the best performance is obtained from that circuit when $\mathrm{Cl}, \mathrm{C} 2$, and C3 are of equal value. Anyone who needs a negative supply should take advantage of his work and give the circuit a try. If you do use it, let us know how things worked out and we'll pass the information along.

Although it wasn't mentioned when we stated the problem, there's one circuit possibility that no one has even taken into account. Suppose you need a negative supply and you're powering your circuit from batteries. There's no negative AC half-cycle to use, so everything we've discussed so far is, unfortunately, irrelevant. Therefore, our new contest is to generate a bipolar supply, with a real negative side, using only a single nine-volt transistor battery.

Now let's get on with other business.
In November's and December's "Drawing Board" we looked at counters (in particular the 4017 decade counter) and saw how they can be used as frequency dividers. We've also found that most of the obstacles associated with devices of that type can be overcome in one way or another.

But we're still left with the problem of the output duty-cycle. In a word, the dutycycle changes every time we change the number we're dividing by. Although even-numbered divisions can be squared up by some sort of gating arrangement, (at the output) odd-numbered divisions present more of a problem.

You could work out some electronic equivalent of a "Rube-Goldberg" scheme to solve the problem-but it's much easier to try a different IC. That's exactly what we're going to do. More specifically, we'll look at the 4018- another ring counter. Not only can it divide an input frequency, but also provides a squared-up output waveform-without any unnecessary brain damage. Although that IC is superficially like the 4017 , its operation is different and requires a bit of special handling to make it work properly.

Figure 3 shows the pinout of the 4018 . If you compare it to the 4017 you'll see that it requires a bit more than connecting one pin to the other in order to divide by a particular number. The 4018 must be pro-
continued on page 106

COMMUNICATIONS CORNER

Recreating sound

HERB FRIEDMAN, COMMUNICATIONS EDITOR

SEVERAL YEARS AGO WE PROPOSED IN AN article on the future of high fidelity that, through the computer and frequency synthesis, it would be possible to reconstruct the sounds of yesteryear. That is, one would be able to play an old cylinder recording, process the sound through a computerized device that had stored in its memory the waveform characteristics of every musical instrument including the human voice, and eventually end up with a perfect recreation of the original signal source. Imagine hearing the full-fidelity voice of Enrico Caruso, or the legendary sound of the Original Dixieland Jazz Band.

Though we haven't quite reached that stage yet-if memory serves, we predicted it would take place sometime around 1985-we have recreated the actual voices of modern day sports announcers, and in a few emergency situations we have recreated the sound of "live" music.

Recreate voices and music? Let's explain what we mean. In the early days of broadcasting a "remote broadcast"-be it sports, drama, or whatever-meant a special radio line installed by the telephone company. Depending on the type of program material, the line might be equalized out to $15 \mathrm{kHz}, 8 \mathrm{kHz} ; 5 \mathrm{kHz}$, or it might be unequalized (for voice transmission), and all that was missing were the upper-midrange and high frequencies. Putting the cost of that special line aside for a moment, if the head of the station called the phone company at 9 AM for a line at 1 PM it was in, equalized, and working by 1 PM-particularly if the input and output were in the same city. Today, it can take a week just to process the paperwork, possibly another week to a month to install the line, and then one hopes the line doesn't crash in the middle of the remote.

To get around the problems of cost and slow installation, many sports broadcasters went to the dial-up phone system. Using a special portable amplifier that clipped directly to a telephone line (usually across the handset's transmitter terminals), the field crew dialed the radio station's telephone, and when the phone was answered they clipped onto the handset. At the station, technicians connected the phone line's signal to the studio console, and eventually broadcast the signal they received through the dial-up tele-
phone system.
As time progressed, the remote equipment got a little fancier and the connection was neater, but one problem remained. Because the dial-up system has a restricted frequency response range of approximately $250-3000 \mathrm{~Hz}$ (actually more like $300-3000 \mathrm{~Hz}$), not only was the announcer unhappy with his basso voice coming out sounding like a thin squeak but, what was even worse was that the shrill sound of $300-3000 \mathrm{~Hz}$ eventually wears down the listener.

It took a number of years, but both problems-that of the thin voice and shrill reception-were resolved by reconstructing the "missing" low frequencies with a device users call a Comrex, which is actually the name of the company that manufacturers the device. Now the fullfidelity low frequencies of the announcers's voice could be broadcast over the dial-up system, and it was even possible in case an equalized radio line failed, to broadcast a "musical" program with some semblance of "balanced sound" by using the phone system.
The Comrex borrows its technology from the "freqwee," a device that makes humans sound like chipmunks in the TV and movie cartoons; the same technology is used to reduce the amount of spectrum used by a radiotelephone signal.

FIG. 1
Figure 1 shows how its done. At the sending or input side of the circuit, the microphone signal is passed into a Comrex encoder that slides the entire frequency range up 300 Hz by beating the audio against a fixed crystal-controlled carrier. The lower voice frequency of 50 Hz becomes 300 Hz , while the voice frequeney of 3000 Hz becomes 3250 Hz . That signal is fed into the dial-up telephone system. Because of the bandwidth restrictions of
the dial-up system and the Comrex equipment, the frequency range of 300 Hz to 3000 Hz is passed to the receiving end, while the frequencies below 300 Hz and above 3000 Hz are attenuated.

At the receiving end of the circuit a Comrex decoder "beats" the 300-3000 Hz signal back down to the range of 50 to 2750 Hz . Now, the announcer's original "bass" tones are reproduced at the radio studio. True, the upper frequencies are attenuated above 2750 Hz , but with the low frequencies back in the voice the "timbre" is restored, and the sound quality at the receiver is "more natu-ral"-not hi-fi, but more closely approximating the "real" voice, and certainly more comfortable to listen to.

Another advantage of the Comrex is that the $300-\mathrm{Hz}$ filter of the Comrex attenuates the telephone line's hum components of 60,120 , and 180 Hz caused by the telephone company using a common pole with the electric utility. The decoded Comrex signal is essentially hum-free.

What happened to the frequencies between 2750 and 3000 Hz ? They are lost because the Comrex does not recreate what does not exist. Remember, when the signal from the microphone was processed by the sending Comrex the frequencies between 2750 and 3000 Hz became 3000 to 3250 , and were sharply attenuated by the phone system; for all practical purpose they weren't received. The highest received frequency was 3000 , which was Comrex'd down to 2750 .

Keep in mind that the upper frequency limit is determined by the upper cut-off frequency of the telephone system. If by chance one were using the Comrex on a Schedule A phone line, which has a frequency range of $100-5000 \mathrm{~Hz}$, the Comrex'd upper frequency limit would be a definitely acceptable 4750 Hz .

The success of the Comrex-and it is an unqualified success-raises the question of how superior the recreation might be if the receiving end had a computer that "remembered" the announcer's "actual voice." Certainly, having the low frequencies in addition to the midband should make a "high fidelity" recreation possible. And if we can do it with voice, why not with music.

Just imagine 1985-if we take a long length of string, two paper cups, and a Comrex, we might just be able to eliminate the phone company!

STATE OF SOLID STATE

An interesting "melody-maker" IC

ROBERT F. SCOTT, SEMICONDUCTOR EDITOR

WE HAVE RECENTLY COME ACROSS SEVERal dedicated IC's that are used in unusual and/or interesting applications. The one we'll look at this month is the MP1173ANI. It's a thirty-tune melody microprocessor from SRJ International (1936 Hillman Avenue, Belmont, CA 94003). The 4-bit microprocessor is a P-channel MOS device with on-chip ROM, RAM, and ALU. It's programmed to play thirty different melodies electronically.

The 28-pin DIP device can be used for many applications. For example, it can be used as a door chime, a replacement for your telephone bell, an intercom annunciator, or a music box. In your car, it could be used as a musical horn or for warning signals (door ajar, low fuel, etc.). A few inexpensive discrete components can be added for melody selection, automatic
melody-sequencing, and additional power-amplification (when needed). Briefly, the features offered by the MP1173 are:

1. It plays thirty different melodies.
2. Sixteen tunes can be played automatically in sequence.
3. Melody selection can be controlled by two six-position rotary switches.
4. Its tone and volume are variable.
5. Tune speed is variable.
6. A $50-60-$ ohm speaker can be directly driven.
7. It can be powered by two 9 -volt batteries.
8. Its scale is chromatic.
9. Tempo is programmmed for each melody.

Figure 1 shows how the IC can be used for a door-chime (or for a similar applica-

FIG. 1

FIG. 2
tion). The optional CD4015 CMOS 4-bit shift register (IC2) is added so that, with Sl open (in the auto position) the melodies are automatically sequenced as S4 is pressed and then released. The door chime can be operated from two 9 -volt batteries or from rectified AC from a 12-18-volt bell transformer. Figure 2 shows how a general-purpose power tran-sistor-fed from output pins 12 through 17 -can be used to obtain higher volume or to drive a low-impedance speaker.

In its standby mode, the MP1173 is turned on but consumes very little power. The CD4015C (IC2) has a quiescent current drain ranging from $1 \mu \mathrm{~A}$ (typically) to a maximum of $100 \mu \mathrm{~A}$ when V_{DD} is 10 volts. Thus, for the circuit shown, the battery's life should approximate its "shelf life".

How it works

When either momentary switch (S3 or S4 - the back- and front-door bell buttons) is pressed, current through R1, R2 and the diode(s) causes Q2 to saturate. That, in effect, grounds pin 4 (ICl's $V_{D D}$ terminal) and turns on the microprocessor. Output pin 28 goes high and the base of Q2 is now held on by current flow through R3 and R4. This keeps IC1 turned on after momentary switch S3 or S 4 is released. At the end of the melody selected by S1 and S2-or the next tune in sequence if the chimes are set in the auto-matic-sequence mode-pin 28 of the MP1173 goes low and Q2 turns off.

If S3 is held down (closed) the tune selected by S 1 and S 2 repeats or the sixteen melodies will play in sequence if the chimes are set for automatic sequencing. A momentary closure of S4 the backdoor button-connects pin 6 to the positive supply voltage through diode D4 and the chimes will play the single tune "Oranges and Lemons." Holding S4 down causes the melody to repeat.

Switches S1 and S2 select the thirty different melodies according to the letter/ number combinations listed in Table 1. The table also lists the sequence of the 16 melodies that are played when S 1 is in the auto position.
The MP1173A-NI melody generator IC is available from SRJ for \$6.95 (\$13.00 for two) plus $\$ 1.50$ for postage and han-

- $6 \times$ rate $\$ 605$ per each insertion.
- Reaches 235,323 readers.
- Fast reader service cycle.
- Short lead time for the placement of ads.
- We typeset and layout the ad at no additonal charge.

Call 212-777-6400 to reserve space. Ask for Arline Fishman. Limited number of pages available. Mail materials to: mini-ADS. RADIO-ELECTRONICS, 200 Park Ave. South. New York. NY 10003

TELTONE'S TRK-957 KIT makes it easier and less expensive to breadboard a lowpower, central office quality DTMF detection system. The included M-957 DTMF Receiver decodes 12 or 16 digits and operates from 5 to 12 V dc. The sensitivity, wide dynamic range, noise immunity, and low-power consumption make it ideal for telephone switching, computer and remote control applications. The TRK-957 DTMF Kit is only $\$ 24.75$. To order call: 1-800-227-3800, ext. 1130.

ELTロNE

CIRCLE 5 ON FREE INFORMATION CARD

Equalizers ... Equalizers ... Equalizers - EQ-2 (top) 12 bands/channel general purpose equalizer-see R-E 5-6/78 $\$ 89$ - Optimized EQ: 10 midrange $1 / 2$ octave, 3 other bands. See C\&E 12/81, 1/83 \$100 • EQ-3, 24 bands mono $\$ 110$ stereo \$200. Free shipping w/check. Visa, M/C. Catalog. Symmetric Sound Systems 856L Lynn Rose Ct., Santa Rosa, CA 95404, (707) 546-3895.

BACKUP YOUR ATARI CARTRIDGES.
Video game cartridges are easily destroyed. You can protect your investment by making archival backup copies of your 2600 series game cartridges. Most cartridges are easily copied onto 2732 EPROM's. Build our EPROM duplicator for under $\$ 45$, make cartridge copies for under $\$ 10$. Complete detailed plans only $\$ 10.95$. RANDOM ACCESS, Box 41770R, Phoenix, AZ 85080 CIRCLE 57 ON FREE INFORMATION CARD

WIRELESS \& ELECTRICAL CYCLOPEDIA. Originally printed in 1918 , this 176 page reprint of the complete catalog gives you an accurate look at the state of electronics in 1918. Contains everything from a Zinc Spark Gap to a $1000-$ Mile Receiving Outfit. You can get your own copy of this modern antique, profusely illustrated, for only $\$ 4.95$ plus $\$ 1.00 \mathrm{P} \& \mathrm{H}$. Order yours from R-E BOOKSTORE, Radio-Electronics, 200 Park Avenue, South, New York, NY 10003.

CALL NOW AND RESERVE YOUR SPACE

- $6 \times$ rate $\$ 605$ per each insertion.
- Reaches 235,323 readers.
- Fast reader service cycle.
- Short lead time for the placement of ads.
- We typeset and layout the ad at no additonal charge.

Call 212-777-6400 to reserve space. Ask for Arline Fishman. Limited number of pages available. Mail materials to: mini-ADS, RADIO-ELECTRONICS, 200 Park Ave. South, New York, NY 10003.

THE MEAN LITTLE KIT New compact kit of electronic tools. Includes 7 screwdrivers, adjustable wrench, 2 pair pliers, wire stripper, knife, alignment tool, stainless rule, hex-key set, scissors, 2 -flexible files, burnisher, soldering iron, solder aid, solder and desoldering braid. Highest quality padded zipper case. Send check or charge BankAmericard, Mastercarge, or American Express. The JTK-6 sells for \$95.00-JENSEN TOOLS INC., 7815 S. 46th Street, Phoenix, Arizona 85040, (602) 968-6231.
CIRCLE 70 ON FREE INFORMATION CARD

CABLE TV DESCRAMBLER KIT $\$ 39.95$ Computerized addressable gated sync type. We also have complete line of Jerrold and Oak cable TV converters and descramblers. Such as, Jerrold gated sync (SB-3), Oak sinewave (N12), and Jerrold 61 channel remote control converter descrambler (DRX-DIC-105). 90 day warranty. SEND $\$ 2.00$ for "INFORMATIVE CATALOG" for prices and availability to: J \& W ELECTRONICS, INC., P.O. Box 61-X, Cumberland, RI 02864.

CIRCLE 63 ON FREE INFORMATION CARD

45-PIECE

COMPACT ELECTRONIC TOOL KIT

A complete assortment of high quality tools. Includes: 13 screwdrivers; 10 pc. hex key set; adjustable wrench; groove-joint plier; cutter; chain \& long nose pliers; wire stripper; knife and replacement blades; soldering iron; solder, desoldering wick; soldering aid; heavyduty padded zipper case. Model K-Z3 $\$ 99.00$ postpaid. We accept Mastercard, Visa and American Express or check. 100\% satisfaction guaranteed or full refund. To order, call 1-800-225-5370. (In MA call (617) 272-5051.) Contact East, Inc. P.O. Box 160 Burlington, MA 01803.
CIRCLE 56 ON FREE INFORMATION CARD

APPLIANCE REPAIR HANDBOOKS-13 volumes by service experts; easy-tounderstand diagrams, illustrations. For major appliances (air conditioners, refrigerators, washers, dryers, microwaves, etc.), elec. housewares, personal-care appliances. Basics of solid state, setting up shop, test instruments. $\$ 2.65$ to $\$ 5.90$ each. Free brochure. APPLIANCE SERVICE, PO Box 789, Lombard, IL 60148. 1-(312) 932-9550. CIRCLE 21 ON FREE INFORMATION CARD

SUBSCRIPTION TV MANUAL. This information packed book details the methods used by subscription TV companies to scramble and descramble video signals. Covers the sinewave, gated pulse, SSAVI system, and the methods used by most cable companies. Includes circuit schematics, theory, waveforms and trouble shooting hints. Only $\$ 12.95$ puls $\$ 1.50$ first class shipping and handling. RANDOM ACCESS, Box 41770R, Phoenix, AZ 85080.

CIRCLE 17 ON FREE INFORMATION CARD

MINIATURE $1 / 6$ W 5\% CARBON FILM RESISTORS offer superior overall performance characteristics compared to carbon composition resistors - at significant cost savings! EIA color coding. 1 ohm thru 10 megohm. $\$ 3.75$ per hundred per value. Mastercard, Visa, American Express, accepted. Please add $\$ 2.00$ for shipping. California residents add 6% Sales Tax. No C.O.D. ACORN INDUSTRIAL ELECTRONICS P.O. Box 10846, SANTA ANA Ca. 92711. 1300-D E. Edinger Ave., Santa Ana, Ca. 92705. (714) 547-8424.
CIRCLE 46 ON FREE INFORMATION CARD

MODERN ELECTRICS. Miniature souvenir of the first publication ever produced by Gernsback Publications. This issue appeared in April 1908-just 75 years ago. You can own your own reprint of this unique first edition for just $\$ 2.50$ plus 75 c P\&H. It's available from R-E BOOKSTORE, Radio-Electronics, 200 Park Avenue South, New York, NY 10003

SURPLUS ZENITH SSAVI TV DESCRAMBLER - This is the real McCoy manufactured by Zenith and used by VHF Station operators in: Ann Arbor Ch 31, Baltimore Ch 54, Chicago Ch 66, Dallas Ch 27, Minneapolis St. Paul Ch 23, San Jose Ch 48, St. Louis Ch 30, Tulsa Ch 41, Washington Ch 50, Boston Ch 27. This unit delivers picture \& sound out of TV, no internal connections. Complete with power adaptor (24 \& 12 volt dual). Fast shipping, insured direct to you from Detroit. To order: send check or money order SALE $\$ 125.00$, Reg. $\$ 189.00$. VIDEO ELECTRONICS, 3083 Forest Glade Dr., Windsor, Ontario N8R-1W6. Quality Orders (519) 944-6443.
CIRCLE 89 ON FREE INFORMATION CARD
IRCLE 94 ON FREE INFORMATION CARD
AND MORE THAN 50 OTHERS BUY THE MODERN WAY BY MAIL - FROM
BANK CARDS ACCEPTED 12 East Delaware Chicago, Illinois 60611 312.664.0020 800-621-8042

The world of electronics gee-vizardry

32 -pages of test instruments - from the latest digital multimeters to the famous EICO scopes. Security systems. Automotive and hobbyist products. Kits and assembled. EICO quality. EICO value. For FREE catalog, check reader service card or send $50 \dot{d}$ for first class mail.
dling. SRJ also sells the Phone-Tunes, which is an FCC approved telephone-bell replacement that connects easily to the telephone system. It, of course, uses the MP1173A-NI IC. Thirty familiar tunes can be selected and different tunes can be used to identify different phones. The Phone-Tunes ($\$ 39.95$) can be operated from two 9 -volt batteries or from an AC adapter (\$6.95). Honeywell Inc., Honeywell Plaza, Minneapolis, MN 55408.

Mike on a chip

Honeywell has just developed a new type of microphone using integrated-circuit technology that consists of a thin film of zinc oxide on a silicon substrate that is direct-coupled to the gate of a PMOS FET amplifier. The sensing element of the new mike is passive; the FET amplifier dissipates less than 40 mW so it can operate for many months before the batteries need to be replaced.

Zinc oxide, like piezoelectric crystals and ceramics, produces electric charges when subjected to stress. The new mikes have response down to 0.1 Hz while the response of most ceramic mikes is well down at 20 Hz .

The integrated-circuit sensors are lighter and smaller than their ceramic counterparts. They are one-quarter inch square while ceramic mike elements are often one-quarter inch thick and one-half inch in diameter. Their reliability is greater because they are solid state-no parts to cement or solder as with ceramics.

The new mike is expected to have many applications. For example, it is expected to reduce hearing-aid size.

Logic optocouplers

Motorola has announced a series of infrared optocouplers with Schmitt-trigger outputs for coupling digital logic circuits in situations that require a high degree of electrical isolation between the control circuits and the controlled equipment. The digital output of the couplers eliminates the need for comparators or other wave-shaping circuitry between computer terminals and peripheral equipment. The infrared optocouplers also have many applications in digital control of power supplies, motors and servos.

The MOC5007, H11L1, MOC5008, MOC5009 and H11L2 optocoupler/isolators feature a $\mathrm{V}_{\text {ISO }}$ (isolation voltage) of 7500 -volts AC minimum, and guaranteed switching times ($\mathrm{t}_{\mathrm{on}}, \mathrm{t}_{\mathrm{off}}$) less than $4 \mu \mathrm{~s}$. The LED trigger current is specified as 1.6 mA for the first two devices, 4 mA for the MOC5008, and 10 mA for the MOC5009 and H11L2. The rise and fall times for the output of the Schmitt-trigger waveform is specified as $0.1 \mu \mathrm{~s}$

The H11L1, and H11L2 are equivalents of devices introduced earlier by General Electric. Prices range from $\$ 3.30$ to $\$ 1.55$ in lots of 100 and up. Motorola Semiconductor Products, PO Box 20912, Phoenix, AZ 85038.

R-E

36 channel wired remote converter only $\$ 8895$

Send $\$ 2$ for complete catalog of converters and unscramblers

Quantity Discounts • Visa • Master Charge Add 5% shipping - Mich. residents add 4% sales tax

C\&D Electronics, Inc. P.O. Box 21, Jenison, MI 49428 (616) 669-2440

INVENTORY REDUCTION SALE!

Huge savings on used and demonstrator Video and CCTV equipment.

OFFER GOOD WHILE QUANTITIES LAST CCTV Cameras \$ 5050
And Monitors Video
Recorders $\$ 13950$

Lenses And Wall Mounts
 sg97

- Similar Savings On Other Items! - All In Good Working Condition!
- No Limits! First Come, First Served!

Ask for Mr. Lewis
TOLL-FREE 800-221-2240
N.Y. STATE 212-989-4433

It's like no other magazine in the world!

Between the covers of this special annual publication are carefully selected articles on scientific developments, recent technical advances, consumer products trends, development of services, exotic communications advances, design information, hobbying tips, and "what's new" material compiled for your reading pleasure and information. Each article was specifically chosen and prepared for publication by the editorial staff of RadioElectronics magazine, updated to the moment it went on press and printed. Here's what you will read about in the 1984 edition:

VIDEO ENTERTAINMENT-It couldn't be said all in one article so we compiled a 16 -page special section covering the changing and growing field of entertainment in the home: new video components with screens from the gigantic to the tiny postagestamp size, accessories that didn't exist last year, and tips on getting the most from what you own or plan to buy.

SATELLITE TV-The countryside is strewn with parabolic tracking dishes installed by home owners to pull-in the countless television channels transmitted back to earth by satellites poised in space in geosynchronous orbits. You, too, can enjoy the programming selection-and much of it is commercial-free, too!

MOBILE TELEPHONES-What was once a status symbol for the idle rich is quickly becoming a working
tool for the common man. Cellular technology promises more channels with a little help from applied computer technology.

DIGITAL AUDIO DISCS-Laser rays are bringing new noise-free, pulse-encoded audio programming to your stereo system embedded in a plastic disc immune to strawberry jam, sandpaper, and desert heat.

MAIL ORDER BUYING-You've heard the bad points, including the myths. Now, here are the facts and economics of buying mail order that will be an asset to your business or hobby.

PLUS-There's so much more, we have space only to mention an electronic guitar tuning project, theory on digital filters, how to make inexpensive computer cables, build a programmable home thermostat, tips on buying pocket-size shortwave receivers, stereo audio for TV, all about VLF active antennas, news on pagers, how to restore antique radios, and....

Radio-Electronics ANNUAL 1984

How to Order-

We can't drop your copy of Radio-Electronics Annual 1984 into the mail sack until we receive an order from you! So, do it today! Fill out the coupon below, giving us all the information requested, write a check or money order (no stamps) for the correct amount, and mail at once to:

> RADIO-ELECTRONICS ANNUAL
> Circulation Department
> 200 Park Avenue South
> New York, NY 10003.
\square Okay, drop my copy of Radio-Electronics Annual 1984 into the mail bag. I am enclosing $\$ 2.50$ for the issue plus $\$ 1.00$ for postage and handling for US, Canada and Mexico. All other countries add $\$ 2.00$. US funds only.
\square I can use \qquad copies of Radio-Electronics Annual 1984. I am enclosing $\$ 2.50$ for each copy plus $\$ 1.00$ for postage and handling for US, Canada, and Mexico. All other countries add $\$ 2.00$. US funds only.

SEND CHECKS OR MONEY ORDERS ONLY
RE184
Allow 6-8 weeks for delivery.
\square I know you have a limited supply of the 1983 Edition of the Radio-Elec-
tronics Annual. Please send me_ copies. I am enclosing $\$ 2.50$ for each copy plus $\$ 1.00$ for postage and handling for US, Canada, and Mexico. All other countries add $\$ 2.00$. US funds only.

Please Print

Name.

Street Address

| City | State |
| :--- | :--- | :--- |

 1 Tuners, $=1$ - annplificrsy effects, keyboards, studio equipment, drum computers,
 easy to assemble kits, books \& more
address
| city \qquad state
zip
 pana Electronics, Inc. Dept. 1-R, 1020 W. Wilshire Blvd. Oklahoma City, OK 73116 800-654-8657 9AM-5PM CST M-F CIRCLE 52 ON FREE INFORMATION CARD

CABLE TV
 Buy Direct \& Save SUPER SPECIALS

 Advanced Solid State design and cir-

 cuitry allows you to receive mid \& super band channels. Restores programming to Video Recorders.

36 CHANNEL REMOTE CONTROL
CABLE CONVERTER ${ }^{5} 69{ }^{95}$
JERROLD 400
THE ULTIMATE CABLE TV CONVERTER

AM STEREO
continued from page 46

played along with the band, mono-stereo mode and tape track. The IF is 262.5 kHz , and the bandswitching is all-electronic. The section of the tuner that is not in use has its DC supply turned off. Therefore a single-transistor switch was added to appropriately operate the AM-stereo de-coder-circuit. The entire AM-receiver section is a single IC but, fortunately, its IF output voltage is high enough. In fact, we had to decrease it by using a 4.7 K resistor in series with the decoder input. The decoder VCO circuit shown in Fig. 10 was used to match the $262.5-\mathrm{kHz}$ IF. The audio outputs were connected in parallel with the outputs of the FM multiplex decoder. Since power is switched for band selection, the connected audio outputs did not interfere with each other. Series resistors had to be inserted in the decoder's audio outputs because their level was higher than that of the FM section of the radio. Doing that kept the sound level about the same when switching between bands. Also, we made up a special PC board for the decoder so that we could fit it inside the tightly packed radio.

The stereo system worked well, but the digital control-system caused phase-generated tones at about 600 Hz and also at about 10 Hz (fluttering). The tuner PLL loop compensation frequency was sneaking through the DC control lines to the varactor in the tuner section, causing phase modulation and some frequency modulation that appeared loud and clear in the audio. Rolling off the audio response below 50 Hz with smaller coupling capacitors at the AM decoder outputs took care of that low-frequency problem. An RC filter on the DC line to the varactors eliminated the 600 Hz tone.

That Sears radio worked out very well. Although it is not microphonic, it is sensitive to phase changes. Faint modulation from other stations can sometimes be heard when the selected station is quiet or has very low modulation. That would probably not be a problem in an automobile. Its bandwidth is much narrower than the Realistic portable which is noticeable in the audio-frequency response. But it's still acceptable, especially for automotive use.
The third conversion was installed in a home stereo receiver, a Technics model SA-222. This receiver has a fully synthesized control and tuning system that's operated by a microprocessor. The synthesizer presented noise problems in the very-low-frequency area and required a minor modification to a filter in the preset tuning circuit.

A small resistor was added to the loopantenna circuit to lower the Q of the loop. That helped maintain a satisfactory band-
continued on page 114

EARN BJG MONEY REPAIR GAMES \& COMPUTERS
ATARI 2600, 2600A
ATAR 400,800 COMPUTERS
COLECOVISION INTELIVISION
EXCLUSIVE AII OPN
EXCLUSIVE! All popular game and computer parts
now available Irom a single sourcel EWC is the irom a single source!
EWC is the exclusive national distributor of the
Electronic Institute's repair courses and Kurz Kasch Signature Analyzers and Test Fixturesurzthe largest distributor of test instrum Fixtures. and plies for digital servicing. Over 28 years of proveng.
Over 28 years of proven quality. affordable prices.
fast service, and guaranteed satisfaction at EWC, your one-stop electronic parts suppliection at EWC.
COMPARE OUR LOW PRICES AND
TRY US FOR YOUR EVERY-DAY
REOUIREMENTS. REQUIREMENTS.

general	8
TUBES	TRIPLERS
	${ }_{5}$
may be assorted	龶
75\% ${ }_{\text {LiSt }}^{\text {OfF }}$	\$995 вас

Call toll-Iree on our 24
hour order hotline and ask for
your copy of our new 92 page catalog.

ELECTRONICS WAREHOUSE CORP.

 1910 Coney Island Avenue Brooklyn. N.Y. $11230 \cdot(212)$ 375-2700 CALL TOLL FREE: (800) 221-0424 CIRCLE 78 ON FREE INFORMATION CARD

COMPUTER CORNER

Computer environments

LES SPINDLE*

Previous columns in this series have discussed the various hardware and software components that make up a computer system. The terminal, CPU, mass storage devices, and printer, with the software, make up the tangible materials that you will need to get started. But once you have those important components assembled, what electrical and environmental factors will you have to take into account to ensure smooth, error-free operation? This month, let's take a look at the necessary steps in achieving a safe, effi-ciently-operating computer system.

Before we look at such things as power requirements, let's look at two often overlooked factors-ambient temperature and air quality. Like all other electrical appliances, computers generate heat. Most units are equipped with some form of ventilation or internal cooling system. But the temperature of the computer room itself is not to be overlooked. In many instances, suitable air conditioning will help dissipate the hot air emanating from the computer and will help ensure longer-lasting performance. The sensitive electric components will not wear out as quickly if you avoid running them for long periods of time in a hot, stuffy office. If your processing workflow can be scheduled so that the computer runs minimally on especially sweltery July or August afternoons, so much the better. You will be giving the system an extra lease on life by sparing it from such a demanding workout.

Clean air is another matter of concern. Needless to say it is wise to take whatever steps are possible to keep the system dustfree. If the air filters in, say, a hard-disk drive become too clogged with floating debris, excessive heat will be trapped within the unit, taking its toll on the longevity of the system. Worse yet, a wornout filter will not prevent dust from settling on the components. Since a harddisk drive stores so much information in a small space, the damage that can be caused by that is obvious. Although the disk head does not actually touch the disk surface, it travels only a minute distance above it. A scratch on either surface may well cause permanent damage to both the disk and the drive - causing an expensive repair bill and the likely loss of valuable data.

[^5]When you buy the components, make sure the sales person shows you where all filters are located. Check them regularly and replace them at prescribed intervals. The importance of that cannot be overemphasized.

Power requirements

Next, consider the power requirements of your system and prepare ahead for those inevitable power disturbancesvoltage dips and surges, excessive line noise, and brownouts and blackouts caused by storms and other unpredictable factors.

Generally speaking, common AC line levels are sufficient for the majority of home and business computer installations. Also, most computer equipment is delivered complete with a power supply that converts that AC to the appropriate DC voltage and current levels needed for the system.

In some cases, however, either the power supply is not included with the equipment, or more current than the supply can deliver is needed to handle add-on peripherals or the like. In those cases, you can purchase an external power supply (see Fig. 1).

FIG. 1
There are too many variables involved to suggest the purchase of a specific power supply, but be sure that whichever one you choose supplies the voltage and current levels that you require. As to the current levels, be sure that the supply can satisfy the demands of your equipment comfortably. Cutting things too close can cause overheating, so as large a margin of safety as possible is recommended.

Now, what about power outages or disturbances and the loss of data that they can cause? While every computer has a degree of built-in protection against such occur-
rences, the amount of that protection varies from system to system. The kind of protection a computer offers should be one of the things that you look into when buying your system. If, however, any loss of data is unacceptable, you will want to invest in additional power-protection devices for added security. Let's look at what's available.

Line regulators (which typically range in price from $\$ 350-\$ 700$) automatically alter the voltage when it gets too low (referred to as a sag) or too high (spike or surge). Sags are sometimes caused by large appliances in the building-air conditioners, compressors, or other computer systems-switching on or off. Spikes (fleeting, imperceptible increase in voltage) and surges (longer increases, often obvious to the user) can be caused by electrical storms, equipment failure on a communications network, or switching of power equipment.

Line isolators ($\$ 150-\$ 400$) weed out interfering signals from such devices as television sets, medical equipment, and CB radios. They also head off voltage spikes.

Power conditioners ($\$ 300-\$ 800$) combine the functions of isolators and regulators, providing spike/surge/sag protection and also eliminating spurious electronic signals.

In cases of severe disturbances or extensive power interruptions, more sophisticated protection is needed. A brownout is a deliberate reduction of power distribution by the electric company due to heavy demand or unpredicted inadequate supply. A blackout is a total loss of power for from a few minutes to several days. Both can be disastrous, in terms of computer operation, if backup support has not been planned. An uninterruptible power supply $(\$ 1,500-\$ 2,500)$ is the only remedy for such conditions. In the event of trouble, those supplies switch instantaneously to a powerful battery back-up system, preventing any loss of data or damage to equipment. Besides that, the device will perform all of the combined duties of isolators, regulators, and conditioners. Obviously, such a power supply is too expensive for many situations, but is necessary where the loss of computer operations data will result in a crisis of one form or another, such as the total loss of a company's payroll records.

R-E

SERVICE CLINIC

The more things change... JACK DARR, SERVICE EDITOR

WE HAD JUST RECEIVED A REPRODUCTION copy of the very first issue of Hugo Gernsback's first magazine-the April 1908 issue of Modern Electrics. (See Fig. 1). We were vastly amused, and amazed at the column "How To Remedy Troubles in Wireless Telegraph Instruments." (I said to my wife, "Look! the very first 'Service Clinic!'" Then she asked if I wrote it. Naturally, my answer was no-since I wasn't even born until 1910).

There's an amazing resemblance between it and the more recent columns of

FIG. 1
"Service Clinic." In reading over that issue, we found some advice that's just as good today as it was then. That advice went something like this: "Sharpen your senses and learn to observe...In hunting for trouble, work first with your brain and then with your hands. If vice versa more trouble is sure to arise." Notice the resemblance? Some things never change. (There's a French proverb on that, which we'll spare you.) Oddly enough, we've been mulling over the idea for a clinic, along the same lines.

Think before you jump

Over the years, we've received lots of letters from readers who were stuck on one electronics problem or another. A few years ago, we started looking into why
that happens-so, we used the most available subject that we could find-ourselves! From the study of ourselves, together with the letters you've sent in, we learned a couple of things. That information has benefited us, so we thought we'd pass it along. In fact, we've got an almost complete manuscript on the subject. We'll finish it one of these days (we keep saying).

Many of our readers, who've written to us for help, are competent electronics technicians. Therefore, they're familiar with most of the electronic circuitry found in audio and video equipment. Why then, do they still get jammed up. That's what we wanted to know, and found out. Very often we get stuck because we don't attack the problem with the right mental attitude. In other words, we simply don't work the brain first. That's because we become so familar with the circuits and the problems associated with them, that we tend to jump in with both feet.

Think positive!

When starting a job, its a good idea to have a positive attitude-that is, keep an open mind and have confidence in yourself. You'll find that the problem isn't so great that you can't handle it. Often, what gets us into a hole is that we start with a fear that we can't handle the job, for one reason or another. In that case, you've got the proverbial two strikes against you before you even come to bat. (You're whipped before you start.) That belief is demonstrably false. You can find any problem and fix it, so forget all that gloom and doom.
Electronics repair, like anything else, is not sharply defined in black and whitethere are gray areas. We ourselves cause faults without knowing it, thus adding to the confusion. Overconfidence is one very common cause of unnecessary re-pair-problem headaches. Such as, when we diagnose the fault before we've even looked at the equipment. However, if the job is approched calmly, confidently, and with an open mind you won't experience the agony of defeat.

Does this sound like you? "That's what's wrong! It's the vertical output transistor etc"-and you haven't even picked up a test prod! Because you've made a decision without hard evidence, the laws of chance are against you. Sure you stiff-
ened up sitting at a bench all day, but jumping to conclusions for the exercise isn't the answer! It's OK to suspect that a transistor or another device may be causing the problem. From there, simply test that stage and if you're right, all that's left to do is to replace the defective component or stage. Again, the best asset you can have is a completely open mind. Who cares what part is bad? All you want is to find it.

If you think some stage is bad, and after testing find you're wrong, don't worry about it. One suspected fault is already eliminated, so go on to the next. By using the process of elimination, you're bound to find the one you're looking for. It's in there somewhere. The fact that the set doesn't work, tells you there's a bad part somewhere. That may sound silly, but we've had letters that said, "There's nothing wrong in there!" That's impossible; if there were nothing wrong, the unit would work.

So, there you have our short course on successful electronic servicing. Remember, use positive thinking. You do know how the thing works, so simply make tests to find out where the abnormality is. It's in there somewhere. Keep this old saying in mind; "If you think you can do it, you can." Old sayings got to be old because they were true! Keep that good thoughtand good luck!

R-E

SERVICE QUESTIONS

DEAD SONY

This Sony KV-1510 came to me dead. The dial lamp and auto-AFT lamps were lighted, though. I measured B + to be 113 volts, which is OK. I measured no flyback-derived voltages at all, though. The horizontal oscillator was not running. At turn-on, $\mathrm{B}+$ is applied to C 517. The "kick" voltage is fed to the oscillator through R519. The problem was C517, When I took it out, one lead fell off in my hand! With that open, there was no charging kick and thus no horizontal-oscillator start. Incidentally, the correct Sams fol-
der for that chassis (SCC-25A-A) is 13222.

Thanks a lot to Douglas P. Hoff, Doug's Electronics of Vacaville, CA for that one. Feedback of that type is always very appreciated.

MODIFICATION FOR VCR USE

RCA offers a modified MAH-001A (horizontal oscillator) module to replace the original. The differences between the two units are as follows: Capacitor C14 changed to $10 \mu \mathrm{~F}, 75$ volts; R25 removed, and C6 shored with a jumper. That modification cleared up rolling and flag-waving at the top.
Thanks to Roy John, electronics technician at Youngstown State University, for that one.

TUBE SUB

I needed a 5KD8 tube the other day but couldn't find one. I looked it up in a substitution guide and came up with some subs: 6U8A, $6 \mathrm{AX} 8,6 \mathrm{KD} 8$, and even the old faithful 6GH8. Those seem to work very well, and the slight current difference doesn't seem to bother anything. Besides, those tubes are cheaper than the 5KD8!-D. Chinn, Chinn TV-Radio, Watertown, WI

TEARING IN RASTER

This Admiral 2K18-2A color chassis develops a small "tearing" at the upper left hand corner that gets increasingly worse as the set warms up. The problem eventually gets so bad that it blanks out the entire top of the screen. Please help!B.B., Sepulveda, CA

Based on the symptoms you've described. an educated guess tells me that the problem is being caused by heater-tocathode leakage in one of the tubes. The most likely culprit here is the 11BT11 (V302) video amplifier tube.

VERTICAL LINE

During a recent hot spell, the horizontal went out on my RCA CTC-76 leaving only a vertical line. When the set cooled off, everything worked fine once again. This is the second time that that has happened. Do you know anything about it?-M.G., West Hempstead, NY

Our crystal ball tells us that most times that problem can be traced to a loose connection on T-402, the pincushion transformer on the PW-400 board. Pinpointing the problem more closely may be possible, because at most times the condition of the connections can be found simply by inspection.

TWO PROBLEMS

A strange thing happened while working on a Sears 528.419450. The set was dead until, (when I turned the set over), the fail-safe transistor (Q553) fell out. Without that transistor, the set began to play, but not everything was normal. A special capacitor(C701) became very hot after just a
few minutes and the B+ voltages were somewhat high and could not be adjusted. After trying this a few times, for just a little while for each test, everything went out again.

I am also working on a Philco B424JBG. The problem with that one is no vertical sweep. That set, too, has me going around in circles. Can you help with either one? I.I., Philadelphia, PA

Well, one thing seems to be sure, that fail-safe transistor must have been doing its task until it fell out. The first thing you'll have to do is find out why that set failed in the first place. Once that is cured, you'll have to find what further damage was done by operating the set without the
fail-safe. As to the first part of the job, the key may lie in the reason why the $B+$ was too high and could not be adjusted. This is a closed-loop type of system. If the B + rises, so does the high voltage. If the high voltage is too high, it triggers the fail-safe transistor, which shuts down the entire system. That is apparently what happened in your case.
As for the Philco, check that set with a scope. In particular, make sure that Q302 and Q304 are oscillating. If not, use the scope to trace through the circuit until you find the point where things are not right. From there, voltage and resistance measurements should lead you to the defective component or components.

R-E

CIRCLE 40 ON FREE INFORMATION CARD

DRAWING BOARD

continued from page 95
grammed before it can function-that's accomplished through use of the JAM inputs. Its feedback circuit is a bit more complicated than the one-wire feedback used with the 4017 . Pins 4, 5, 6, 11, and 13

are output pins. Connecting various combinations of those outputs to pin 1 allows the IC to divide by any number from 2 to 10. Pin 10 is the enable pin for the jam inputs; when pin 10 is brought high, it allows the 4018 to be programed using the Jam inputs. Those inputs make that IC extremely interesting.

ELECTRONIC TECHNICIAN!

COMIIIAD PRODUCTIOIS
 FCC LICENSE TRAINING, Dept. 90

P.O. Box 2223, San Francisco, CA 94126

Rush FREE facts on how I can get my FCC License in spare time. No obligation. No salesman will call.
NAME
ADDRESS
CITY M STATE ZIP
No costly School. No commuting to class. The Origina Home-Study course that prepares you for the FCC Radiotelephone license exam in your spare time! An FCC Government license is your "ticket" to thousands of exciting jobs in Communications, Radio \& TV, Mobile two-way, Microwave, Computers, Radar, Aerospace and more. You don't need a college degree to qualify, but you do need an FCC License. No need to quit your job or go to school! You learn how to pass the FCC License exam at home at your own pace with this easy-to-understand, proven course. It's easy, fast and low cost! GUARANTEED PASS - You get your FCC License or money refunded. Write for free details. Soon you could be on your way to being one of the highest workers in the electronics field. Send for FREE facts now. MAIL COUPON TODAY!

隹

TABLE 1
Division by Pins to connect To pin 1

4 and 5
4 and 6
6
6 and 11
1 and 13
13

Using the 4018 is a bit more difficult, but it's still a lot less complicated than trying to square-up the output of the 4017. Let's forget about the JAM inputs for the time being and look at what must be done to get the IC working. Using the IC without those inputs is really very simple. Dividing by a particular number is merely a matter of choosing the appropriate outputs and connecting them to pin 1. Different combinations of those outputs let you divide as shown in Table 1.

The problem immediately facing us is the external gating necessary to make the IC divide by an odd number. Since it's necessary to use two output pins for each odd number, it's difficult to get switchselectable divisions. It could be done, but the wiring diagram for the switches would be a nightmare and ultimately unnecessary. Using the JAM inputs is far easier.

Try experimenting with the 4018. If you're lucky enough to have a scope, take a look at the output waveform-it should be relatively square. If you were to use all the capabilities of that IC, you'd understand why it's so versatile. If you do experiment with it remember-the reset pin and Jam inputs must be held low and enable held high for the IC to work. Next month we'll see how to take advantage of those Jam inputs and see how to cascade 4018's in order to extend the division range.

R-E

GITUCESTER CDMPUTER

$P\left[/\left[L_{4}\right.\right.$ all features of Promqueen less mimic mode Software enhanced to include EPROM QC utilities, RS232 communication, printouts. 28 pin ZIF socket. Reads, edits runs and programs all 5 volt 2500 and 2700 series EPROMS plus variety of EEPROMS all without personality modules. Commodore C64 host computer. Inquire about the mimic mode capability in our VIC Promqueen
$\$ 299.00$
ROM Packs Industrial quality circuit cards are socketed, solder masked, fully bypassed, and include a ground plane for low noise operation. Includes 1 EPROM. 8 K \& 16 K models for VIC-20 and C-64. Specify 2732 or 2764 EPROM type. Molded plastic case.
$\$ 39.00$
GIDILCESTER CDMPUTER
1 Blackburn Center, Gloucester, MA 01930 617-283-7719
CIRCLE 4 ON FREE INFORMATION CARD

NEW BOOKS

For more details use the free information card inside the back cover

STUDY GUIDE FOR THE ASSOCIATE LEVEL CET TEST edited by J．A．Sam Wil－ son，ISCET Test Director；International Society of Certified Electronic Tech－ nicians， 2708 West Berry，Fort Worth，TX $76109 ; 88 \mathrm{pp} ; 81 / 2 \times 11$ inches；softcover； $\$ 5.00$ ．

Here is a new study guide that describes the associate test and gives some hints for those who want to take it．Each of the sec－ tions on the associate－level CET exam is dis－ cussed in detail，with descriptions of what the technician should know，and includes some sample questions with detailed explanations of the answers．The explanations in the guide were developed following an extensive sur－ vey of what types of questions were most frequently missed by those taking the test．

Subjects covered include basic com－ ponents，basic mathematics，DC circuits，$A C$ circuits，transistors and semiconductors， electronics components and circuits，tests and measurements，digital logic，and troubleshooting and network analysis．

While the price of this book is $\$ 5.00$ for a single copy，lots of 10 or more may be pur－ chased at $\$ 3.50$ each．
CIRCLE 121 ON FREE INFORMATION CARD
COMPUTER ART AND ANIMATION FOR THE TRS－80，by David L．Heiserman； Prentice－Hall，Inc．，Englewood Cliffs，NJ 07632； 246 pp including appendices and index； $61 / 8 \times 91 / 8$ inches；hardcover； \＄17．95．

While the subject of computer graphics is often treated as a novelty，this book treats TRS－80 computer graphics and animation as a topic worthy of study and experimentation． The discussions and examples should help a programmer build up a sense of confidence in developing programs that use graphics fea－ tures．

The material in the book stresses the point that the quality of the finished product re－ quires applying time and effort，rather than just following a routine technique．The anima－ tion technique features high－speed graphics that do not require a knowledge of machine－ language programming and methods．It＇s all in BASIC．Sample applications of the princi－ ples are given to spark the reader＇s imagina－ tion．

The program and procedures given here apply to the TRS－80 Model III and the original Model I．The book emphasizes a modular approach to creating some of the more com－ plicated animation routines．

CIRCLE 122 ON FREE INFORMATION CARD

DIGITAL PLL FREQUENCY SYNTHESIZ－

 ERS Theory and Design，by Ulrich L． Rohde；Prentice－Hall，Inc．，Englewood Cliffs，NJ 07632； 494 pp including index； 7 $\times 91 / 2$ inches；hardcover；$\$ 49.95$ ．The objective of this book is to provide as much practical circuit information as possible while presenting only the necessary mathe－
matical background and formulas．It is slanted toward college students who have to get acquainted with phase－locked loops （PLL）or have to build certain projects；as well as toward practicing engineers who are de－ signing synthesizers for various applications， and toward senior engineers and people in management functions who want to be able to evaluate new trends and techniques．The reader is introduced to practical and reliable circuits that can be used as starting tools．

The book is divided into seven sections： Charpter 1 deals with loop fundamentals； chapter 2 outlines the noise and spurious response of loops；chapter 3 deals with special loops，most of which have been de－ veloped recently，and chapter 4 covers an－ alyzing PLL components．

Chapter 5 goes into the details of multiloop synthesizers，starting with such earlier de－ sign principles as mix and divide，triple mix，or drift－canceling loops．The ground rules for setting up complex loops are then laid out， and the use of microprocessors in frequen－ cy synthesizers，and their use in communica－ tion equipment，is covered．

Chapter 6 consists of the analysis and schematic details of three practical syn－ thesizers as a design guide．The final section is the appendix，which is divided into a mathe－ matical review and a list of useful computer programs．
CIRCLE 123 ON FREE INFORMATION CARD
AMATEUR RADIO Theory and Practice，by Robert L．Shrader，Gregg／McGraw－Hill， 1221 Avenue of the Americas，New York， NY 10020； 340 pp ．including index； $71 / 4 \times$ $91 / 4$ inches；softcover；\＄14．95．

This manual presents in easy－to－read lan－ guage，the latest information required by the FCC for all five amateur－grade licenses： Novice，Technician，General，Advanced，and Extra．The author covers the specifics of radio operation and the electricity and elec－ tronics theory that are required for each level．

The material is divided into easy－to－follow topics，with many diagrams，and a reinforcing quiz is presented at the end of each chapter． Each paragraph is prefaced with a bold letter indicating the particular grade license it pre－ pares the student for，and a number that ref－ ers to the end－of－the－chapter FCC－exam－ type questions on that material．Those ques－ tions are listed under the five amateur－license grades and are suffixed with references to chapter sections．
CIRCLE 124 ON FREE INFORMATION CARD
32 ELECTRONIC POWER SUPPLY PRO－ JECTS，by Robert J．Traister；TAB Books， Inc．，Blue Ridge Summit，PA 17214； 291 pp including appendices and index； $5 \times 81 / 4$ inches；softcover；\＄10．95．

This book offers the reader a chance to get practical experience building DC power－ supply circuits for a variety of applications that range from amateur radio or audio pro－

TRAIN AT HOME IN SPARE TIME！ NO PREVIOUS EXPERIENCE NEEDED！ BEA
COMPUIER
PROCRAMMER

FOR HOME or
BUSINESS．．．WHAT，WHEN，HOW！
Learn how and why a computer can help you． Learn to write your own computer programs． See how easy it is to use different programs already available．See how they fit into your home or business operations．．．budgeting，real estate，bookkeeping，inventories，expenses， estate，bookkeeping，inventories，expenses， pricing，profit margins，investments，interest，
taxes，shopping lists，vacation planning，ad－ taxes，shopping lists，vacation planning，ad－
dresses，phone numbers，routing．．．hundreds dresses，phone numbers，routing．．．hundreds
more including foreign languages，computer more including foreign languages，computer
games and graphics．Never again be at the mercy of a so－called＂computer expert．＂Know what really happens when you get a computer problem from a bank，store，loan company，oil company，utility or anyone else．You＇ll be able to talk their language．．．understand why and how things happen．．．be able to take the offen－ sive when you＇re the victim of a computer error．

EXPERTS SHOW YOU WHAT TO DO，
HOW TO DO IT．．．TO MAKE YOUR LIFE EASIER Everything is explained in easy－to－understand lan－ guage with plenty of examples．Step－by－step di－ rections take you through basic computer program－ ming．You learn everything you need to know to use the computer．You＇ll be able to understand computer experts and talk their language．．．storage，systems． terminals．．．you＇ll learn it all and much，much more．

NOW．．．ALL THIS IN ONE COURSE！
－Computer Training－Computer Programming
－Computer Applications－Computer Games
Find out what you need to
know about computer operations

TIMEX COMPUTER INCLUDED WITH YOUR TRAINING Plugs into any TV！

SEND FOR FREE FACTS！

COMPUTER TRAINING，Dept．DEOC3
SINCE 1891 Scranton，Pennsylvania 18515
I Please rush me free facts and color brochure that tells how I can learn computer applica－ tions，programming and operation at home in spare time．NO SALESMAN WILL CALL．
Name
Age
Address
City／State／Zip

CATCH ON
 MASTER COMPUTERS

 IN YOUR OWN HOME! EARN PROGRAMMIN youcan matai Nowyou can loam about com oulera. tions sothyere Evepting you atmaya wantec to know. Whio your oun marca wanitec to know ...nto your ow Procrami Mako acompler do eroctir in this one ofucationso packiog
A COURSE IN COMPUTERS AND BASIC PROGRAMMING
 2mplo lanousog, thars basy tor bo

A CONVENIENT WAY TO LEARN

 Propress at your own speed in your spare time in your own home Take themyere
data Get stariod now in the tast: growing hield of
technology of the tuture. COMPUTERI
Send loday yor your tree intormation package. Or call toll-treo (800) 624.7760

- yourt dorm ormant Ave., Los Angeles, CA 90006
halix An affiliate of Hemphill Schools and IPIG.
INSTITUTE
CIRCLE 50 ON FREE INFORMATION CARD

```
    M CENTER FOR COMPUTER EDUCATION
    M CENTER FOR COMPUTER EDUCATION
    LOS ANGELES, CA 90006
    LOS ANGELES, CA 90006
    LOS ANGELES, CA 90006
    LOS ANGELES, CA 90006
YESI Send me Information, on how I Can learn about computers and 
YESI Send me Information, on how I Can learn about computers and 
Name
Name
I alroacy have a computer avalable.}\mathrm{ State/Zip
I alroacy have a computer avalable.}\mathrm{ State/Zip
Make
Make
jects to all types of experimental electronics devices. The reader will also learn fundamentals of power-supply theory that will be valuable later on.
The 32 DC power-supply projects range from the very simple (a half-wave supply and a Zener-diode regulator) to such advance units as a unique variable supply or a 12 -volt inverter circuit.
Each project includes detailed, step-bystep building instructions, complete schematics, and parts list. Every one of the devices dealt with in this book can be built in a few hours from low-cost, readily available components.
CIRCLE 125 ON FREE INFORMATION CARD
COMPUTERS THAT THINK? The Search for Artificial Intelligence, by Margaret 0 . Hyde; Enslow Publishers, Bloy Street and Ramsey Avenue, Box 777, Hillside, NJ 07205; 126 pages, including selected reading list and index; \(91 / 2 \times 61 / 4\) inches; hardcover, \(\$ 9.95\); paperback, \(\$ 4.95\).

There is wide disagreement among experts as to whether any computer can be said to "think" or exhibit real intelligence. A computer or robot is labelled "smart" or "intelligent" when it performs tasks that require smartness or intelligence for a human being to perform. However, no computer can create, or initiate a line of research, or go behind the literal meaning of the words in its memory banks and interpret what it is really being asked. Fallibility is another matter; computers are infallible so long as their power supply doesn't fail, or some component go out of order. But that isn't intelligence. Neither is the
continued on page 111

QUALITY SPECIALS
SOPHISTICATED ICIS: DATA SHEETS AEE PROVIDED FREE
WITH ALL NTEGRATED CIACUITS LISTEO BELOW

 CMOS DIVIDEAIC HAS TRUTHTABLE SELECTABLEINPUT \(\$ 3.50\)
TO VIELO DIVIDE BY 10.100 .1000 OA 10050 OUTPUTS.
 DiGit STMOBES ACCESS TO LSO LATCHES ALIOWS
ATACHMENTO OR PESCALEAS FO COUNTING TO \(\$ 00 \mathrm{MHR}\)


 DETECTION OA GENERATION THANGLE 10
CONVERSION OR RREOUENCY TRANSLATION




 hall effect devices





FREE CATALOG OF NEW DEVICES
GOLDSMITH SCIENTIFIC CORPORATION
P.O. BOX 318R, COMMACK, NY 11725 PHONE ORDERS WELCOME-(516) 979-794
MASTER CARD AND VISA ACCEPTED MASTER CARD AND VISA ACCEPTED
IEW YORK STATE RESIDENTS ADO SALES \(T\) I
 CIRCLE 69 ON FREE INFORMATION CARD

\section*{Diskette Users...} When you've heard from all the animals in the diskette zoo, but you need fast delivery and high quality diskettes...

\section*{Diskette order desk 800-521-4414 \\ In Canada 800-265-4828}

\section*{Choose your brand Choose your price}



\section*{Memorex} diskettes \$1.94 each

Burroughs diskettes=: \(\$ 2.09\) each



Dysan diskettes=: \$2.99 each


\section*{Call Communications Electronics}


\section*{Wabash} diskettes \$1.29 each
\begin{tabular}{|c|c|c|c|}
\hline Wint &  & \% &  \\
\hline 711 & 129 & anm & 1200 \\
\hline \%14 & - & \%17201 & (2i8 \\
\hline nis & 200 &  & 210 \\
\hline * &  & coicle & \% \\
\hline แ12 & , & \%ine & \% \\
\hline \%120 & 129 & \(\bigcirc\) & 150 \\
\hline  & \% & \%120 & \(1{ }^{\circ}\) \\
\hline 仙这 & 20 & \% & 20. \\
\hline & & \% & \\
\hline  & \({ }^{220}\) & 3201 & \({ }_{200}^{200}\) \\
\hline
\end{tabular} In theola 319868


For more information about this brand call:


3M
diskettes=: \$1.94 each


CIRCLE 86 ON FREE INFORMATION CARD

\section*{NEW BOOKS \\ continued from page 108}
machine's incapacity for boredom or getting tired.

Nonetheless, some experts consider that computers may be constructed that will fit at least some definitions of intelligence. This book is an introduction to the research and development of artificial intelligence systems, such as computers and robots, exploring the similarities and differences between computers and the human brain. Can a computer learn something that it has not specifically been told? How do they work? What is the difference between the way computers and human beings reach conclusions? What about computer sense perception? How do computers and the human brain differ in understanding commands?

All of the above questions and more are covered in this well-written book, which will enhance the readers' understanding of computers and robots. There are numerous, excellent photographs. As to the question that the book's title poses: The author presents the evidence, both positive and negative, and leaves it to the reader to render the verdict. CIRCLE 126 ON FREE INFORMATION CARD

ELECTRONIC COMMUNICATIONS: A Step-by-Step Introduction; Prentice-Hall, Inc., Englewood Cliffs, NJ 07632; 249 pages plus index; \(91 / 4 \times 63 / 4\) inches; softcover; \$12.95.
This book starts off with a simple definition of "communication." "Communication is defined as 'a process by which information is exchanged.' For the purposes of this course, information is defined as any electrical signal representing data."
What we have here is an introduction to the fundamentals of electronic communications that uses proven training methods to explain state-of-the-art forms of communication fully. It covers communications fundamentals, amplitude modulation, AM receivers, angle modulation, pulse modulation, antennas, communications systems, and much more. It is a volume in the Heathkit/Zenith Educational Systems series.
CIRCLE 127 ON FREE INFORMATION CARD

\section*{INTRODUCTION TO PROGRAMMING US-} ING FORTRAN 77, by Glenn A. Gibson and James R. Young; Prentice-Hall, Inc., Englewood Cliffs, NJ 07632; 461 pages, including appendices and index; \(91 / 4 \times 63 / 4\) inches; softcover; \$19.95.

Designed as a text for a three-semesterhour introductory programming course, this book opens with a brief introduction to computer systems. That is followed by sufficient basics of a computer language to enable the readers to write simple programs. The intent is to give the student a little programming experience; then he or she will be ready for the fundamentals of problem formation and programming procedure. After that, we have a detailed study of the language and, finally, a thorough discussion of programming techniques. That approach, known as the spiral method of teaching, allows the student to begin programming early and to mix the study of details of the language with such topics as program structure, testing, debugging, and documentation.

Two types of exercises are featured: brief
section-end exercises that are designed to force the reader to review the preceding section, and programming problems at the end of each chapter. Although a section-end exercise may request that a program be written, it is not intended to be run on a computer; it is, rather, the chapter-end programming problems that are meant to be tested and run on a computer.
CIRCLE 128 ON FREE INFORMATION CARD
DIGITAL IC PROJECTS, by F.G. Rayer, T. Eng. (CEI), Assoc. IERE; Electronic Technology Today, Inc., PO Box 83, Massapequa Park, NY 11762; 91 pages; \(7 \times 43 / 6\) inches; softcover; \$5.00.
This book contains both simple and more advanced projects. Various forms of assembling and wiring the integrated circuits
are shown, and that aspect of a project can be quite straightforward; printed-circuit boards are not needed.
There are introductory chapters dealing with components and power supplies (battery running, transistor regulation, \(A C\) supply, IC regulator, etc.).
22 projects are then set forth, each illustrated. They include a Nixie Numerator, Roulette, Noiseless Switch, Multi-Digit Counter, Digital Stop-Clock, and 1-Armed Bandit. The more ambitious projects can be built and tested step-by-step.
CIRCLE 129 ON FREE INFORMATION CARD
AUDIO AND VIDEO INTERFERENCE CURES, by Larray Kahaner; Hayden Book Company, Inc., 50 Essex Street, Rochelle
continued on page 113


\title{
NEW LITERATURE
}

\title{
For more details use the free information card inside the back cover
}

METERS, catalog of digital and analog instrumentation meters is 67 pages on coated paper, many of them in part or full color, and is \(81 / 2 \times 11\) inches. The instruments include digital panel meters, wide-vue panel meters, segmented-scale panel meters, pyro-meters, edgewise controllers, solid-state non-indicating controllers, digital multimeters, hand-portable DMM's, function generators, oscilloscopes, milliameters, micro-testers, and many others. The catalog is free on request from Simpson Electric Company, 853 Dundee Avenue, Elgin, IL 60120.
CIRCLE 111 ON FREE INFORMATION CARD
SOLDERLESS TERMINALS, catalog of new electrical products from Vaco is 24 pages in full color and contains all Vaco products related to electrical and electronics applications. The major section is a comprehensive listing of Vaco's solderless terminal line, which includes actual-size, actual-color illustrations, and complete specifications for
each individual terminal. Also included are special-purpose connectors, alligator clips, wire connectors, nylon ties, and wire holders. Electrical tools included are wire strippers, crimping tools, and electrical testers. The catalog is free from Vaco Products Company, 1510 Skokie Blvd., Northbrook, IL 60062.
CIRCLE 112 ON FREE INFORMATION CARD
DMM, data sheet is an \(81 / 2 \times 11\) inch flyer, in full color, that describes and specifies the performance of Fluke's handheld DMM, the model 8026B, that features true rms measurements of \(A C\) voltage and current. Free from John Fluke Mfg. Co., Inc., Mail Stop 250 C, PO Box C9090, Everett, WA 98206.
CIRCLE 113 ON FREE INFORMATION CARD
COMPONENTS, catalog is 80 pages, illustrated, \(81 / 2 \times 11\) inches, for the hobbyist, experimenter, student, or professional. Included are semiconductors, integrated circuits, microcomputer boards, microprocessor and
support circuits, transistors, diodes, capacitors, resistors, optoelectronics, potentiometers, test meters, switches and knobs, connectors and sockets, PC boards, plastic enclosures, artwork aids, electronics tools, soldering equipment, and data and reference books-and many other categories. Free from Active Components (a division of Future Electronics), PO Box 8000, Westborough, MA 01581
CIRCLE 114 ON FREE INFORMATION CARD
GRAPHICS PLOTTER, brochure on the 7470A Graphics Plotter, is 6 pages, part in full color, on coated stock, \(81 / 2 \times 11\) inches. Provides photos, charts, and a list of specifications for the device. The specifications include the plotting area, resolution, repeatability, interfaces, and media, as well as a list of accessories supplied with the Plotter. Free from Hewlett-Packard, 1501 Page Mill Road, Palo Alto, CA 94304.

R-E
CIRCLE 115 ON FREE INFORMATION CARD

Learn About Professionalism and Profit . . .

> while enjoying the time of your life!

> At the 1984 Annual NESDA/ISCET National Professional Electronics Convention
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{1984 and "Arch of Progress" Trade Show} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{The Eateway To
Pro essionalism}} & - Products - Service Alds - Test Equipment \\
\hline & & \multirow[t]{2}{*}{\({ }_{\text {\& Tennis Outings }}\) - Instructors Conterence} \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

\section*{}

Early Registration Discounts. Also discounts for additional persons from same family or business. Send for more details - Now!

Send for more information and an application to NPEC, 2708 W. Berry St., Ft. Worth, TX 76109; Ph (817) 921-9061 Name \(\qquad\) Address \(\qquad\)
City __ State __ Zip___


\section*{What USO is doing today for service families}

At USOs around the world, thousands of volunteers are making service families like those from your community feel they're at home. Information, classes,
tours, crisis intervention and more help families during the good times and the bad times. USO ... the three most important letters in helping others.

\footnotetext{
Support USO through the United Wav, OCFC. or local USO campaign.
}

\section*{NEW BOOKS}
continued from page 111
Park, NJ 07662; 114 pages, including appendices and index; \(81 / 4 \times 51 / 4\) inches; softcover; \$6.10.
Complaints about interference get higher each year, and most people who can get through the FCC's jammed phone lines receive a recorded message that anticipates the inquiry, instructing the caller on how to file a formal interference complaint. And those who complain formally are only a percentage of those who suffer from the problem.
This book was written both for those who suffer from interference and those who are the unintentional cause of it. It covers the problems of interference caused by transmitters, CB radios, home appliances, atmospheric noise sources, neon lights, hair dryers, and numerous other sources. Written in easy-tounderstand language, the book provides all the information needed to halt interference, whatever the source may be, whether it's transmitter or non-transmitter oriented. It gives step-by-step instructions on how to detect the offending source and cure the interference. The final chapter tells the reader where to find outside resources for help with particularly difficult interference problems.
CIRCLE 130 ON FREE INFORMATION CARD
DON LANCASTER'S MICRO COOKBOOK (Volume 1: Fundamentals); Howard W. Sams \& Co., Inc., 4300 W. 62nd Street, Indianapolis, IN 46268; 381 pages, including appendices and index; \(81 / 2 \times 51 / 4\) inches; softcover, \$15.95.

This book contains a set of rules that will help the reader win the game of microcomputers and microprocessors. It gives many of the micro resources that you can use, and lists some of the micro trainers that are available. There is an examination and explanation of essential numbering systems and basic logic, and microcomputer/ microprocessor codes and coding systems are covered. There is also a discussion of the different kinds of memory available. The author shows you how micros work, and how you can build your own micro skills. It is the first in a series on microprocessors and microcomputers.
CIRCLE 131 ON FREE INFORMATION CARD
THE COMPLETE GUIDE TO HIGH FIDELITY, by Martin Clifford; Howard W. Sams \& Co., Inc., 4300 West 62 nd Street, Indianapolis, IN 46268; 368 pages, including glossary and index; \(81 / 2 \times 41 / 4\) inches; softcover; \$15.95.
in the preface, the author immediately disposes of the myth that a first-class highfidelity system "will bring the concert hall into your home." It won't do anything of the kind, he notes, and it would be unfortunate if it did. The sound of the cannon in Tchaikovsky's 1812 Overture would probably break your windows if the music were played at concerthall volume. What high fidelity does do, through a series of compromises, is to give the listener the effect of being in a good seat in a concert hall; and certainly on some stereo records you can clearly hear details that you probably would not hear-or not notice-in the concert hall.
This book leads the reader through the hi-fi maze, providing enough technical informa-
tion so that the principles can be understood. It shows 30 basic systems ranging in cost for those with limited to those with unlimited budgets. Digital recording, amplifiers, tuners, receivers, preamplifiers, drive motors, proximity effect, and impedance matching are all covered. There are many diagrams and illustrations, and a thorough glossary in the back of the book for those unfamiliar with highfidelity's various technical terms and abbreviations or acronyms.
CIRCLE 132 ON FREE INFORMATION CARD
DIGITAL ELECTRONICS (Second Edition), by William H. Gothmann; PrenticeHall, Inc., Englewood Cliffs, NJ 07632; 383pp, including index; \(91 / 2 \times 7\) inches; hardcover; \$21.95.

Subtitled "An introduction to theory and
practice," this newly revised text is an up-todate course in basic design techniques that will help engineers and technicians to deal with the growing use of digital electronics. The book explains both digital theory and logic hardware, bridging the gap between theory and practice and giving the designer tools with which to solve digital problems today and in the future.
Revisions of the earlier text include introducing the binary, octal, and hexadecimal systems-those used by our friendly computers; covering combinational logic and the reduction of Boolean expressions; reviewing the increasing importance of bus structures and memory systems, and presenting the principles of analog-to-digital and digital-toanalog conversion.

R-E
CIRCLE 133 ON FREE INFORMATION CARD

\begin{tabular}{|c|}
\hline NEW PRODUCTS \\
\hline continued from page 31 \\
\hline
\end{tabular}

The model HP 7475A is priced at \(\$ 1895.00\). The smaller model HP 7470A plotter has many of the performance specifications and features of the model HP 7475A, but has penchanging capability for only two pens. It is priced at \$1095.00.-Hewlett-Packard, 3000 Hanover Street, Palo Alto, CA 94304.

LOGIC ANALYZER, the System 2100, features a remote-control capability that allows the operation of an analyzer located at a field site using a logic analyzer located at the home office. All analyzer functions are available, including state and timing displays.


CIRCLE 116 ON FREE INFORMATION CARD
Messages may be sent by either analyzer to signal the operator, including "Pick up the phone."
Keyboard-to-keyboard remote control is a standard feature in these analyzers when the


RS-232 I/O port is installed. Prices start at \(\$ 8995.00\) for the mainframe, including the stringy floppy; and 16 -channel \(100-\mathrm{MHz}\) modu'es are priced at \(\$ 1995.00\), including a 1 megohm 7.5 -picofarad active probe with external clock capacity.-Intech, Incorporated, 282 Brokaw Road, Santa Clara, CA 95050.
\begin{tabular}{|c|}
\hline AM STEREO \\
\hline continued from page 102 \\
\hline
\end{tabular}
pass over the entire AM band. The original detector circuit was also modified to smooth AGC response and control. (The detector circuit, although not used for stereo reception, generates AGC voltages and had to be kept intact.) That modification could have been skipped, but a noticeable improvement resulted in output from stations across the band with widely varied signal strengths.

Audio outputs were connected in parallel with the outputs from the FM multiplex system. The stereo indicator already in the receiver could be driven directly from the AM decoder lamp drive through a 470 -ohm resistor. The result with this receiver was excellent AM stereo, although the lack of a front end RF amplifier made reception of some stations difficult.

\section*{Final suggestions}

In radios that are AC powered, it may be necessary to suppress noise caused by rectifier circuit diodes. If a sharp buzz is heard, it may be the result of these powerswitching diodes. The problem can usually be corrected by installing a \(.05 \mu \mathrm{~F}\), 250 -volt (minimum) ceramic disc capacitor across each diode in the power supply circuit.

Household devices such as lamp dimmers or remote-control units that operate lights and appliances can generate tremendous noise, which is distributed by the building's electrical wiring like a huge antenna. AM radios will pick up this noise and make listening very unpleasant if not altogether impossible. The manufacturers of these devices may be able to offer methods or reducing the problem. Otherwise, they will have to be turned off or disconnected when using the AM receiver.

Installation of an outdoor, long-wire antenna for the broadcast band may alleviate most of those interference problems. Another, perhaps more important benefit is that an outdoor antenna will provide a greater source of stereo signals to choose from.
In the near future, when many major, music-program AM stations have introduced C-QUAM stereo broadcast, you'll no longer be limited to hearing good stereo from local FM station whose range is limited roughly to line-of-sight. You'll be able to hear the AM stations from hundreds of miles away (as you can now, especially at night), but in full stereo! R-E

\title{
MARKET CENTER
}

\section*{BUSINESS OPPORTUNITIES}

WHOLESALE MATV/CATV/VCR equipment, antennas, audio cables, adaptors, original/replacement cartridges \& styli, telephone accessories, radios, cassette recorders, speakers, etc., send letterhead for free catalog (212) 897-0509 D\&WR, 68-12 110th St., Flushing, NY 11375.
MECHANICALLY inclined individuals desiring ownership of small electronics manufacturing busi-ness-without investment. Write: BUSINESSES, ness-without investment. Write: BUSIN
\(92-\mathrm{R}\), Brighton 11th, Brooklyn. NY 11235.
VIDEO game repair business. Start your own. Information/parts list \(\$ 5.00\). BEST ELECTRONICS, 4440 Sheena, Phoenix, AZ 85032.
E-Z learn security alarm systems. Employmentbusiness terrific. Information \(\$ 2.00\) (redeemable) SECURITY PO Box \(1456-\mathrm{H}\), Grand Rapids, MI 49501.

PROJECTION TV... Make \$\$\$'s assembling projectors... Easy... Results comparable to 2,500 projectors... Your cost less than \(\$ 20.00\)... Plans, lens, \& dealers information \$17.50... Illustrated information free... MACROCOM-GEX, Washington Crossing, PA 18977. Credit card orders 24 hours. (215) 736-2880.
TECHNICAL writers make big money... writing short sentences! Free details: TEK PUBS, Box 2458-E, Oroville, CA 95965.
LCD watches \(\$ 2.50\). Penwatch \(\$ 2.00\). Catalog \$1.00. RELIANT ENGINEERING COMPANY, BOX 33610, Sheungwan, Hong Kong.
ACT now and get rich! Never before mail-order business secrets revealed! Booklet, \$11.99. DARIS DISTRIBUTORS, Suite 519, Anaheim, CA 92804.
ATTENTION: In-home assemblers needed. For more information and application, send \(\$ 5.00\) to: PERSONAL DEPT., 1618 Ozark Ave., Gastonia, NC 28054.

\section*{EDUCATION \& INSTRUCTION}

EARN your university degree through evaluation assessment, of existing education, experience, achievements. Call, (614) 863-1791, or write, ASSESSMENT, Box 13130 R, Columbus, OH 43213.
UNIVERSITY degrees by mail! Bachelors, Masters, Ph.D's... Free revealing details. COUNSELING, Box 317-RE1, Tustin, CA 92680.
VIC-20 make backup tape of game cartridge, tape program, complete instructions \(\$ 6.00\). SHERWIN So. 11 Foxcroft Rd, N. Hartford, NY 13413.
\begin{tabular}{|c|}
\hline \multirow[b]{4}{*}{\begin{tabular}{l}
FCC LOWERS REQUIREMENTS GET YOUR RADIO TELEPHONE LICENSE \\
FCC changes make obtaining High-Level Radio Telephone License much easier
now Eliminate unnecessary study with our short cuts and easy to follow study materal. Obtaining the General Radio Telephone License can be a snap! Sample exams, also section covering Radar Endorsement. A small investment for a
high-paying career in electronics. \(\$ 19.95\)
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

\begin{abstract}
REEL TO REEL TAPES
AMPEX professional series open reel tape, 1800-or 2400 -feet on 7 -inch reels, used once. Case of 40 , \(\$ 45.00 .101 / 2 \times 3600\) feet and cassettes available. Master Card/Visa. VALTECH ELECTRONICS, Box
\end{abstract} 6-RE, Richboro, PA 18954 (215) 322-4866.

\section*{CB EQUIPMENT}

CB radio books, kits, modifications, catalog \(\$ 1.00\) refundable. APS, PO 263RE, Newport, RI 02840.
PALOMAR/PRIDE electronics - exclusive repair facility. Service - update - improvements on these and similar equipment. PALOMAR PRIDE REPAIR, 1320 Grand, San Marcos, CA 92069 (619) 7440720.

\section*{WANTED}

WANTED: old Western Electric \& RCA tubes, speakers, amplifiers. Mcintosh, Marantz, tube amps. (713) 728-4343. MAURY CORB, 11122 Atwell, Houston. TX 77096.
INVENTIONS, ideas, new products wanted for presentation to industry and exhibition at national technology exposition. Call 1-800-528-6050. Arizona nology exposition. Cal
\(1-800-352-0458\). X831.

GOLDEN Eagle Mark IV PLL board or information on where to send unit for repair. 817-553-3631 MIKE SHEFFIELD, 411 Pine, Frederick, OK 73542.

\section*{RESUMES}

PROFESSIONALLY prepared resume to fit your job search. Kit includes sample resume and three (3) cover letters. Send \(\$ 17.00\) and brief description of your objective/position level in SASE: RESUMES FOR PROFESSIONALS, PO Box 279, Woodland Hills, CA 91365.

\section*{SCANNERS}

SCANNERS- discount prices Bearcat BC-100 \$279.99; Bearcat 210XL \$214.99; Bearcat 300 \(\$ 335.99\); Regency MX3000 \(\$ 186.99\); JIL SX100 \$138.99; JIL SX200 \$269.99; Bearcat 20/20 \$275.99; Spectrum radar detector \(\$ 214.99\); plus \(\$ 3.00\) shipping. Free discount catalog. Lowest prices anywhere on scanners, radar detectors, marine radios, two-way accessories. SCANNER WORLD, 10-RE New Scotland, Albany, NY 12208 (518) 436-9606.

To run your own classified ad, put one word on each of the lines below and send this form along with your check To run your own classified ad, put one word
for \(\$ 2.15\) per word (minimum 15 words) to:
Radio-Electronics, 200 Park Avenue South, N.Y., N.Y. 10003
ORDER FORM
PLEASE INDICATE in which category of classified advertising you wish your ad to appear. For special headings, there is a surcharge of \(\$ 20.00\).
( Plans/Kits
( ) Business Opportunities
) Education/Instruction () Wanted ( ) Satellite Television

\section*{PLEASE PRINT EACH WORD SEPARATELY, IN BLOCK LETTERS.}
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 \\
\hline 6 & 7 & 8 & 9 & 10 \\
\hline 11 & 12 & 13 & 14 & 15 \\
\hline 16 & 17 & 18 & 19 & 20 \\
\hline 21 & 22 & 23 & 24 & 25 \\
\hline 26 & 27 & 28 & 29 & 30 \\
\hline 31 & 32 & 33 & 34 & 35 \\
\hline
\end{tabular}

\section*{PLEASE INCLUDE FOR OUR FILES YOUR PERMANENT ADDRESS AND PHONE NUMBER.}

CLASSIFIED COMMERCIAL RATE for firms or individuals offering comercial products or services). \$2.15 per word prepaid (no charge for zip code)...MINIMUM 15 WORDS. \(5 \%\) discount for 6 issues \(10 \%\) for 12 issues within one year, if prepaid.
NON-COMMERCIAL RATE (for individuals who want to buy or sell a personal item) \(\$ 1.50\) per word prepaid...no minimum.
ONLY FIRST WORD AND NAME set in bold caps. Additional bold face (not available as all caps) at 20 c per word. All copy subject to publisher's approval. ADVERTISEMENTS USING P.O. BOX ADDRESS WILL NOT BE ACCEPTED UNTIL ADVERTISER SUPPLIES PUBLISHER WITH PERMANENT ADDRESS AND PHONE NUMBER. Copy to be in our hands on the 20th of the third month preceding the date of the issue (i.e., August issue closes May 20th). When normal closing date falls on Saturday, Sunday, or a holiday, issue closes on preceding working day.


\section*{EXCELLENT FOR:}
- All Antenna Systems
- Voice Communications - Video RF Line Amplifiers - Frequency Counters - MATV Systems


\section*{- CCTV Systems}
- Oscilloscopes - FM Broadcasts

Now you can use one TV/FM Antenna to cover all close and distant stations without experiencing overloading problems. Ideal for outdoor and indoor use. 10 im pedance is 75 ohms. Power Supply is separate coax feed system which allows amplifier to be located anywhere in cable run. Power Supply has knob to control varible gain, LED power on indicator, built-in AB switch and on/off switch. ALL-2VG Wired and Tested

Take advantage of our recently purchased manufacturing and patent rights to the ALL-2VG

\section*{MODULATOR}

Not A Game Type Modulator The MPS-1 Kit converts
Video/Audio signals to a


Assembly Time crystal controlled RF output Approx 5 Minutes for TV Channels 3 and 4 . The MPS-1 Modulator's ad justable inputs are designed to match all TV Cameras and VCRs and features a voltage regulated power supply, power switch and LED indicator. No Tuning Required. Operates

5030 Paradise, Suite C-100, Las Vegas, NV 89119
以u Telephone: 702-739-9732/9733 \(\longrightarrow\)
MAIL ORDERS: Send check or money orders. Add \(5 \%\) shipping and
CIRCLE 9 ON FREE INFORMATION CARD


SPECIAL SPECIAL SPECIAL GENUINE "MITSUMI" A 55F Varactor Tuner MODIFIED SCR AND GEI CONSISIANI MODIFIED SCR AND GET CONSISTAN
VERSION QUALIVI CHANNELS 14.83 For use in our SCR \({ }^{18 \text { 80EA }}\)
\(\$ 16.88 \mathrm{EA}\)
10.PAK 10500

SCR 10-PAK 14500
SCR ELECIRONICS
TERMS: VISA, M.C., CHECK, 5303 Lincoln Ave.
Cypress. CA 90630 MONEY ORDER. Add \(\$ 3.50\) S\&H Calif. add 6\% tax. (74) 527-2554 1-800- OUTSIDE CA - PHONE ORDERS WELCOME-
 in frequency expanders, speech processors, FM converters, PLL \& slider tricks, how-to books, plans, kits. Expert mail-in repairs \& conversions plans, kits. Expert mail
16-page catalog \(\$ 2\).

CBC INTERNATIONAL, P.O. BOX 31500RE,
PHOENIX, AZ 85046 (602) 996-8700

\section*{FOR SALE}

CABLE TV SECRETS - the outlaw publication the cable companies tried to ban. HBO, Movie Channel, Showtime, descramblers, converters, etc. Suppliers list included. Send \(\$ 8.95\) to CABLE FACTS, Box 711-R, Pataskala, OH 43062.
RESISTORS \(1 / 4 \& 1 / 2\) W5\%C.F. 3 cents. \(1 \%\) M.F. All values. No minimums. Volume discounts. Write JR INDUSTRIES, 5834-B Swancreek, Toledo, OH 43614.

COLOR computer VIC-20 programs hardware Rtty code EPROM Progammer RS-232 FRANK LYMAN, Box 3091, Nashua, NH 03061.
SCANNER/monitor accessories-kits and factory assembled. Free catalog. CAPRI ELECTRONICS, Route 1R, Canon, GA 30520.
TI-99/4A software. Free price list plus newsletter. GLEN DOBBS, Box 801 RE, Santa Maria, CA 93456.

ALARM! Vic 20/64 CoCo Sinclair become \(\$ 1000\) burglar fire system. Cassette, documentation (specify microprocessor) \(\$ 29.00\). Retailers inquire. Catalog. SKIDMORE'S H'N'S, 3926 Overland, Greensboro, NC 27403. Sinclair piano, music program, cassette all hardware \(\$ 9.00\).
DESCRAMBLERS for downconverters. High gain. Free information. RB ELECTRONICS, PO Box 643, Kalamazoo, MI 49005.
PARABOLIC dishes \(20^{\prime \prime} \$ 6.95\) ea. \(28^{\prime \prime} \$ 15.00\) ea. includes bracket. Lots of 100 pcs. VIKING PRECISION, INC., 4631 South 35th Place, Phoenix, AZ SION, INC., 4631 Souts.
85040 (602) \(276-6218\).

\section*{HIGH QUALITY 팡 55dB GAIN MICROWAVE
IV SYSTEM \\ Varible from 1.9 to 2.5 GHz}


The latest advance in microwave technology with a SNOW-FREE PICTURE. Two Models to choose from. Both Models Include:
- 20" Parabolic Dish
- Pre-assembled Probe with Down Converter
- Power Supply and Coax Switch
- 60' of RG-59/U Coax with Connector - Transformer for 75 to 300 Ohms
- All Mounting Hardware for Fast and Easy Installation
\(20^{\prime \prime}\) Fiberglass Dish
Up to 55 dB Gain
Special \(\$ 98^{95^{*}}\)

20" Aluminum Dish Up to 40 dB Gain Includes Shipping and Handling
VISA Available thru Mail and Phone Orders Only (Personal Chocks, alow 2.5 wooks to clear)
PROFESSIDNAL UIDEO, ING. 4670 Hollywood Blvd. Hollywood, Calif. 90027 For C.O.D. Orders Call (213) \(\begin{aligned} & 219-0227 \\ & 352-9681\end{aligned}\)

PICTURE flyer lists quality electronics surplus at low prices. Since 1970. Send for the last 3 issues, STAR-TRONICS, Box 683, McMinnville, OR 97128
LATEST bug-detection equipment for home or office. Literature, \(\$ 1.00\). CLIFTON, Box 220-X, Miami, FL 33168.
SATELLITE-microwave-cable-video equipment. Systems from \(\$ 75.00\). Send SASE to H.M.S., 2011w. 11th St., Upland, CA 91786.
THE Intelligence Library - Restricted technical information \& books on electronic surveillance, surveillance-device schematics, lock-picking, investigation, weapons, identification documents, covert sciences, etc. The best selection available. Free brochures. MENTOR, (Dept. Z), 135-53 No. Blvd., Flushing. NY 11354
MILITARY communications receiver: R-174, tunes \(1.5-18 \mathrm{MHz}\), AM-CW-SSB, amateur, shortwave frequencies: \(\$ 47.50\) mint, \(\$ 27.50\) good. Canadian backpack radio PRC-510, \(38-54 \mathrm{MHz}\) FM transceiver with headset, battery box, antenna: \(\$ 39.50\) apiece, \(\$ 77.50\) /pair. ARC-27 guard receiver, single channel UHF aircraft receiver: \(\$ 12.50\) mint. Add \(\$ 5\) unit shipping. 45 day replacement guarantee. BAYTRONICS, Dept. RE, Box 591, Sandusky, OH 44870.

TUBES. new, unused. Send self-addressed, stamped envelope for list. FALA ELECTRONICS, Box 04134-2, Milwaukee, WI 53204
CABLE TV equipment for "beeping" or "buzzing" channels. Information \$1.00. GOLDCOAST, PO Box 63/6025F, Margate, FL 33063 (305) 752-9202.
GEARMOTORS \(\$ 35.0012\) VDC \(60 \mathrm{rpm} 3 \mathrm{amp} .1 / 2 \mathrm{in}\). shaft. Drives robots, antenna, boat steering, gates, etc. Also racks, pinions, chain, gears, etc. SEPACS, 625 NW 41st, Seattle, WA 98107.
COLOR computer owners-Free hardware and software catalog. SPECTRUM PROJECTS, 93-15 86 Drive, Woodhaven, NY 11421 (212) 441-2807.
FORTY-nine educational electronics kits with self-learning project manual. Details \(\$ 2.00\) refundable with order. TRIANGLE ELECTRONICS, 89 Arkay Drive, Hauppauge, NY 11788.
RF parts/Motorola transistors. MRF454 \(\$ 16.50\), MRF \(455 \$ 13.50\). Catalog available. RF PARTS CO., 1320 Grand, San Marcos, CA 92069. (619) 7440720.

UP to \(\$ 500.00\) per month. Sell computer software in your home. Write to: COMPUTER SERVICES, PO Box 7748, Tucson, AZ. 85725.
SAVE on guaranteed quality surplus. Free flyer. ELECTRONIX LTD., 3214 South Norton, Sioux Falls, SD 57105.
30 channel wired remote CATV converter kits. Complete with everything \(\$ 39.95\). CABLE SALES, 3868 Trade Ctr. Dr., Ann Arbor, MI 48104 C.O.D. or certified funds. Other cutrs. available.
U-FIX-M Oak CATV converters -M-26. Buy one get one free \(\$ 19.95\). CABLE SALES, 3868 trade Ctr. Dr., Ann Arbor, MI 48104 C.O.D or certified funds. Other converters available.
WIND power an investment in the future. The rightdecision is essential. Information \$2.00. WINDESIGN, Box 138, Boston, NY 14025.
PRINTED-circuit boards: quotes free. SASE to JAHMAALELECTRONIC SUPPORT, PO Box 397. Troy, NY 12181.
MUSICAL Christmas/Birthday cards- Microprocessor plays music when opened. \(\$ 5.00\) each or \(\$ 50.00\) doz. MIPS, \(6810-\mathrm{N}\) Seagull, New Orleans, LA 70126.
CAR alarm stickers four for \(\$ 4.00\) SASE JEFF POSNER COMPANY, PO Box 766, Lynbrook, NY 11563.

RADIO Television News - Service- TV - TechElectronic Servicing-Radio-Electronics-Popular Electronics- 622 magazines 1953-1983 all for \(\$ 500.00\). ERNEST TRENT, 331 N. Rosina Ave., Somserset. PA 15501.


SPEAKER \& ELECTRONICS CATALOG
1001 BARGAINS IN SPEAKERS

\section*{Tel.: 1 (816) 8425092}

1904 MCGEE STREET KANSAS CITY, MO. 64408


\section*{PLANS \& KITS}

PRINTED-circuit boards. Quick prototypes, production, design, reflow solder send print or description for quote to KIT CIRCUITS, Box 235 , Clawson, MI 48017
CABLE TV converters and equipment. Plans and parts. Build or buy. For information send \$2.00. C \& D ELECTRONICS, PO Box 21, Jenison, MI 49428.
UP-TO-DATE electronics kits. Unbelievable high quality. Amazing low price. Free catalog. INTERNATIONAL POLYTECHNIQUES, PO BOX 862, New York, NY 10002
HI-FI speaker kits, auto speaker systems, and raw drivers from the world's finest manufacturers. For beginners and experts. Free literature. A\&S SPEAKERS, Box 7462R, Denver, CO 80207 (303) 399-8609.
LIGHT chaser/color organ kits, rack mount units 20\% off sale. DESIGN SPECIALTY, PO Box 1995, Huntington Beach, CA 92647.
MICROWAVE television "downconverters". Ex clusive new five stage design. Easily assembled. Catalog: \(\$ 2.00\) (refundable). NDS, Box 12652-R Dallas, TX 75225

\section*{FREE KIT Catalog \\ FUNCTION GENERATOR KIT \(\$ 59.95\) contains Auto-Ranging Cap-meter kit \(\$ 79.95\) TEST \& \\ Phone 209-772-2076 MENTER's \\ Write or Phone for FREE CATALOG EQUIP. \\ DAGE SCIINNIFIC INSTRUMENIS \\ BOX 144 VALLEY SPRINGS CA 95252}

ULTRASONICS- complete kit builds attractive detector and solid state switch. Control AC lights, other appliances. Turns lights on when room is entered, off when room is empty. Use alone or as part of a security system. Complete kit \(\$ 49.50\). Finished unit \(\$ 74.50\). Mail check for prepaid immediate shipment. ADVANCED ENERGY TECHNOLOGIES, INC., 30 Brower Ave., Oaks, PA 19456. Visa \& Master Card accepted.

REPLACE NE 564 (UHF sine wave boards) deluxe I, II rev.B by IC. and parts available everywhere. Guarantee works great, modification, plans, circuit, chokes, \(\$ 25.50\). Money orders only. ADVANCE ELECTRONICS, Box 3298, Culver City, CA 90230
ELECTRONIC touch light control pad. Write for free brochure EXOTIC ELECTRONIC IDEAS, PO Box 446, Lake Bluff, IL 60044
CABLE TV converters, descramblers. plans, parts For catalog send \(\$ 2.00\). CROWN ELECTRONICS PO Box 352, Milton, FL 32570.
PROJECTION TV... Convert your TV to project 7 foot picture. Results comparable to \(\$ 2,500.00\) projector... Total cost less than \(\$ 30.00\)... Plans \& lens \(\$ 19.95 \ldots\) Illustrated information free... MAC-ROCOMA-GE, Washington Crossing, PA 18977 Credit card order 24 hours. (215) 736-3979.
200 electronics kits, projects, plans. Send stamp for list. MATCO ELECTRONICS, Box 316R, Cadillac MI 49601.
HOBBYISTS... simplify digital circuit design using EPROM. How to guidebook also includes nine pro jects you can build. \(\$ 15.00\) to TECHNILOGIK, PO Box 45, Essex, VT 05451


DIGITAL oscilloscope... Build for less than \$150.00! Complete schematics \(\$ 5.00\). MIKE McGLINCHY, 1878 Newell Ave., Walnut Creek, CA 94595.

MOST advanced sine converter descrambler available. PCB and plans \(\$ 15.00\). JIM RHODES 1025 Ransome Ln., Kingsport, TN 37660.
ELECTRONIC lock - versatile, combination entered by two buttons. CMOS- perfect for vehicular use. Plans \(\$ 3.00\), plans and PCB \(\$ 25.00\), complete kit \(\$ 55.00\), assembled and tested \(\$ 95.00\). Free flyer. RHB ELECTRONICS, Box 57, Northboro, MA 01532.

TIMEX/SINCLAIR VIC-20 bible pack. Design/build any peripheral imaginable. Includes cassettes \(\$ 39.95\), info \(\$ 6.00\) refundable. JORGE SAMPSON, Box 38663, Houston, TX 77288
CONVERT your TV to an oscilloscope. A simple fun plan. \(\$ 6.00\) to L.S.E., Box 8402, Madison, WI 53708.

MAILING list for sale. All 123,500 subscribers names and addresses to UHF Channels 60,65,67 and 68 W.H.T. gated syn-suppressed N.Y. and Phia. area. Never sold before, \(\$ 45.00 / \mathrm{M}\). Also fully computer assembled and tested units \(\$ 49.00\) ea Write to SEYMOUR ADVERTISING, 9857 Tecumseh Rd. East, Windsor, Ontario, Canada N8R-1A5. (519) 735-8122.
PLANS- electronic VM calibration kit. Instructions, parts list, diagram. Send \(\$ 3.00\) to MORRIS ENTERPISES, Box 367, Converse, TX 78109.
AUTOMATIC fine tuning (AFT) for UHF/VHF converter board Deluxe I, II- never again readjust fine tuning, state of the art design, plans, circuit, parts list \(\$ 15.00\). Deluxe I, II get clear picture as normal commercial TV channel, improve sound adjustment, stop vertical jitter \(\$ 11.00\). ADVANCE ELECTRONICS, PO Box 3298 , Culver City, CA 90230.

\section*{SATELLITE TELEVISION}

SATELLITE TV receiver breakthrough! Build your own commercial quality receiver now! In-

\section*{CABLE TV} EQUIPMENT
Complete with Descrambler 60 Channel Wireless Remote Control

Jerrold, Ook. Hammlin Become a Cable TV Giant in your Town and Get in on the Big Protits

Send ar Coll for information on our Dealer Catalog and Special Pricing. Territories

\section*{为 \\ Long Island Wholesale 37 Sherwood St., Greenwich, CT 06830 For Cable Info Call 203-869-2091}

The Use of Some Cable TV Equipment is Illegal. Check With Your Own Local Cable Co. Before Ordering. We Except No Liability for your Misuse.


LNA'S 120 degree \(\$ 269.00\). Write for lowest satellite component prices. SATVISION, Box 11, Alvin, IL 61811.

LOWEST Prices- Prodelin (Ma-Com) DH dishes, KLM, Satellite America, and more. Wholesale prices. AMERITEK SYSTEMS, 3650 James St., Syracuse, NY 13206 (315) 433-6050.

\section*{B \\ SATELLITE TV MAGAZINE}

A monthly of 100 -plus pages.
Product Information - Test Reports Antenna Installation - Legal Aspects

Satellite Television the growth industry of the ' 80 's. Send \(\$ 1.00\) for sample copy to SATELLITE TV MAGAZINE P.O. Box 2384 - Dept. R - Shelby, NC 28150

\section*{SATELLITE TV VIEWERS}

P.O. Box 308 , Fortuna, California 95540

800-358-9997 (U.S.) • 800-556-8787 (Callf.)
707-725-2476 (all others)

\section*{SYNTHESIZERS}

COMPLETE plans for five professional music syn-thesizers- bass, monophonic, duophonic, duophonic four voice, and polyphonic. Send \(\$ 15.00\) to SYNTRON, \(10751 / 2\) Mill Road, Helena. MT 59601

\section*{ROBOTICS BOOKS}

ROBOTICS books - design, theory, construction. Send \(\$ 1.00\) for catalog. KOHN, RE1, Box 16265 Alexandria, VA 22302.

\section*{NEWSLETTERS}

FREE! Sample issue of Electronic Systems Newsletter, a monthly publication written especially for the electronics hobbyist/experimenter. Fascinating projects, new ideas and sources. AF PUBLISHING, Dept. R, PO Box 524, So. Hadley, MA 01075.

\section*{SUERIOR UHF PREAMP KIT}

MOST advanced UHF preamp kit ever to be offered! Unit will drastically improve picture quality of all UHF-TV stations and even find stations you never thought existed. Great for generating that extra gain decoders need for maximum stability. Kit includes all parts, power supply, enclosure and instructions for only \(\$ 29.95\). Free postage/handling for prepaid orders, COD's \(\$ 1.75\), catalog \(\$ 2.00\). HOWARD RESEARCH AND DESIGN, PO Box 204, Ellicott City, MD 21043. (301)-456-8166.

\section*{REVERBERATION FOR ORGANS}

Soid state with controls for rever-
beration and room size.
EVERY ORGAN SHOULD
OWN ONE.
DEVTRONIX ORGANS, INC
6101 WAREHOUSE WAY
SACRAMENTO, CALIFORNIA 95826 Dept. B

\section*{COMPUTERS}

48 K computer US \(\$ 380.00\), and hundreds Apple compatible software. Details US \(\$ 1.00\). RELIANT, PO Box 33610, Sheungwan, Hongkong


\section*{SkyFox}

State-of-the-firt Excellence SKYFOX DESIGN PERFORMANCE FERTURES: - Goin 55 db - Frequency \(1.9-2.5 \mathrm{GHz}\) - Range 55 miles maximum - Tuning channels 2.6 - 20 inch Parabolic dish anterna - 60 r . cable - Cable adopters, mounting brackets and hardware included - Illustrated instructions

Receive movies, special presentations and educa tional broadcasts-ALL FREE-with the SKYFOX deep fringe microwave receiver for homeowners outside the service area of microwave TV stations. SKYFOX receives up to a distance of 55 miles From microwave transmitters located on buildings or towers in almost all medium and large size cities. SKYFOX does not receive Cable TV or satellite transmissions
SKYFOX I \$ 79.95 (not pictured, 25 mile line of site) SKYFOX II \$109.95 (as shown, 55 mile line of site) ORDERS ONLY: Toll Free \(1-800-323 / 1327\) For Information Call: 1-312/564-0104 Visa, Mastercharge accepted, COD, cash or Money Order only. When ordering by mail, Money Orders or Cashiers Checks only. Personal checks, wait 4 weeks for check clearance

\section*{S.E.I. Inc.}

657 Academy Drive Mail Order Only Northbrook. Illinois 60062

CIRCLE 64 ON FREE INFORMATION CARD

\section*{CABLE-TV EQUIPMENT}

DESCRAMBLERS for cable TV model TX-200, amazing price, only \(\$ 79.95\) compatible with Jerrold Starbase-3 or any gated pulse system. Automatic gain control. Highest quality components. One year guarantee. Other types available. Deluxe catalog \(\$ 3.00\). TELTECH, 120 Wall Street, Suite 1044, Dept. RE 1, New York 1005.

\section*{TI-99/4A SOFTWARE}

TI-99/4A owners. Send for free catalog of new and exciting, low cost software. DYNA, Box 690, Hicksville, NY 11801

\section*{EPROM PROGRAMMING SERVICE}

EPROM programming sevice for hobbyists and commercial users. All common EPROM types. Write for complete listing and price information. ELECTRONIC COMMUNICATIONS SERVICES, PO Box 441, Franklin Park, IL 60131.

\section*{FREE LCD WATCH WITH KIT}

LSR UHF converters with AGC: gated pulse wave BT-1 (speaker box), \(\$ 115.00\). Sound out from the TV type; Deluxe IIB sine wave, \(\$ 100.00\); new! I. F. sinewave, \(\$ 55.00\); Digital ZFV-5, \(\$ 175.00\). Quantity discounts. Plans: large SASE ( 54 cents postage). Free shipping/handling for prepaid orders. Store at 3806 W. Lawrence. (1-312) 588-8828/267-3455 LSR ENGINEERING, Dept. RE, Box 6075, Chicago, IL 60680-6075

\section*{USA PAY-TV STATIONS}

ZENITH manufactured SSAVI UHF converter manual. Explains how to turn-on boxes that were shut-off and override the addressability to receive all programming tiers. Send \(\$ 15.00\). VIDEO ELECTRONICS, 3083 Forest Glade Dr., Windsor, Ontario, Canada N8R 1W6, Zenith converters (the real McCoy) available. Call (519) 944-6443.

\section*{HOME ROBOTS}

JOIN the personal robot revolution. Meet Heath's Hero-1 and RB Robot's RB5X at CAL-ROBOT, PO Box 5973. Sherman Oaks, CA 91413 (818) 905 0721.

\section*{STOP}

LOOKING FOR RESISTORS, CAPACITORS, DIODES, METERS HURDWARE, CONTHCLS, POWER RES ISTORS, TRNESISTORS,
IC'S, TRANSFORMERS, FUSES, KITS, LED'S CABINETS SENO \$1.00 (refunonale). FOR OUR catalos of OVER 1200 ITEMS OR SEND A STMPP FOR OUR FLYER, 24 HOUR
TURN AROUND TIME. LOW PRICES. 1005 GUNRNTEE Daytapro Electronics, Inc.
3029 N. WILSHIRE LN., ARLINGTON HTS., ILL. 60004 312-870-0555

\section*{(11) IIERㅁ Electronic ORGAN \& PIANO KITS}


\section*{MICROWAVE TV ANTENNA SYSTEMS}

Freq. 2.1 to \(2.6 \mathrm{GHz} \cdot 34 \mathrm{db}\) Gain +
COMPLETE SYSTEMS [as Pictured)
Commercial \(40^{\prime \prime}\)
Rod Style \$89.95 Parabolic \(20 "\) Dish Style \$ 79.95 COMPONENTS Down Converters (both types) \$ 34.95 Power Supplies (12V to 16V) \$ 24.95 Data Info (Plans) 9.95
CALL OR WRITE FOR KITS. PARTS. INDIVIIUAL COMPONENTS
We Repair All Types Down
Converters \& Power Supplies
Phillins-Tech ELCBTHOLICS
P. 0. BOX 34772 Phoenly, az 85067 ( 602 ) 265-8255
Special Quantity Pricing Dealers Wanted

\section*{COMPUTERIZED THERMOSTAT}

FULLY PROGRAMMABLE • GUARANTEED TO REDUCE YOUR HEATING-COOLING BILLS 30-50\%!!
- For Home or Office
- Patented Microprocessor
- Up to 6 settings a day, 7 days per week
- Simple one-button operation
- Simple 10 minute installation for do-it-yourselfer
- Qualifies for 15\% Energy

Tax Credit
- Warranty

COMPLETE
UNIT
s79.95
KIT
FORM
s64.95
INCL. \$2.50 FOR SHIPPING


Dimensions \(5.3 / 8 \mathrm{~W} \times 41 / 2 \mathrm{H} \times 1 / 3 / 160\) 24 V Systems - Not tor 2 . Stage Heat Pumps

Dealers Wanted


EXCLUSIVE 3-WAY GUARANTEE 1.30 -day money-back. no hassle guarantee 2 . One year money-back pertormance guarantee it you don't save at least the cost of the unit in a year MAGICSTAT will give you a full relund. 3. Three.year warranty on parts and workmanship. Full details with each MAGIC-STAT [Guarantees apply to complete units only]

\section*{( \(\theta\) () C A ELEGTRONICS P. O. BOX 33205 \\ PHOENIX, AZ 85015 \\ (602) 274-2885}

Call or write for FREE
Semiconductor Parts \& Products Catalog

\section*{*ENV MULTI-CHANNEL MICROWAVE}

Complete Antenna Systems from \({ }^{5} 69^{95}\) Full 800 Mhz Range Tune 1.9-2.7 Ghz Includes all ITFS Channels
DEALERS WANTED
COD's and Credit Card Orders call TOLL FREE
1-800-247-1151


ELECTRONICS 6009 N. 61 Avenue Gilendale, AZ 85301
1-602-247-1151

-602-247-1151


\section*{HIGHLY \\ PROFITABLE \\ ELECTRONIC \\ ONE-MAN} quired, sales handled by professionals. Ideal home business Write today for facts' Postcard will do, Barta-RE-X, Box 248 Walnut Creek, CA 94597.

\section*{Are you supporting yourchild's drughabit?}


An ounce of pot costs about 60
dollars.
Coke, a lot more.
Quaaludes run about 4 dollars each. And if so many children are using drugs, they're spending a lot of money. Where are they getting it? Point is. your children might be spending their allowance on something other than video games.

Learn about drugs. Watch for the possible signs. Sleeping a lot. Listlessness. Poor marks in school. Lack of school attendance.

Most of all, show your child that you care and you're concerned about the possibility that they may be using drugs.

And send away for our booklet. Parents: What You Can Do About Drug Abuse." Write Get Involved, P.O. Box 1706, Rockville, Maryland 20850.

Get involved with drugs before your children do.

BEC Electronics
P.O. BOX 461244R

GARLAND, TX. 75046
(214) 487-9031

18.50 ea.

2/34.50 IC and after the easy assembly is completed you will be able to reproduce almost any sound you want! Quality PC board and all necessary components are provided. All you need to add is a speaker. The circuitry of the kit provides you with a Pulse Generator, MUX Oscillator \& Comparator to make more complex sounds a snap. Programming examples provided to help you get used to using the unit.

Special SUPER MUSIC
MAKER KIT 27.95 ncludes CASE \&
ROM CHIP ROM CHIP KSM-03 COD MINIMUM \(\$ 20.00\). ADD \(\$ 2.50\) FOR COD'S UPS DELIVERY ADDRESS MUST ACCOMPANY ALL COD ORDERS \(\$ 1.00\) HANDLING ON ORDERS UNDER \(\$ 10.00\) ADD \(6 \%\) FOR SHIPPING - TEXAS RESIDENTS ADD 5\% STATE SALES TAX ALL FOREIGN ORDERS ADD \(25 \%\) FOR SHIPPING CALL (214) 487.9031 TO PLACE CRED


TESTS: Battery Condition, Pick-up Coil, Ignition Module, and HV Coil
11.88

\section*{THE BEST D} This hand held Automotive Tester checks and lests the functions listed below easily and quickly. he original manufac urer sold over a million units in 1983 at 19.95 each nstructions and charts re printed on the back of each unit. This tester will save hours of frustration and pay for itself the first ime used! Units are all new, \(100 \%\) guarate or 90 day guarantee or 90 days from date of urchase.
ORDER: AS-25 BEFORE JAN. 31,
WINDSHIELD
WIPER DELAY
Complete assembled PC
card with IC, relay, and
control with schematic
Complete with custom
molded plastic case with
bracket and hardware.
Special introductory
price! 5.95
Order: AS-01 RINGER SEMI KIT Contains special ML 8204 tone ringer IC and com ponents to build a pleasant tone ringer for your phone. 5 pgs. of specs and circuits. Order: KTR-01S 2.50 PC Board for above Order: PCB-01

AY 18.50 FOR BOTH
LM180s Audio IF \& Separate 2 W Audio output ICL-1808 .99/TDA1002 2W Audio output Order: ICL-1002 1.25 LM301 Linear 8 pin Op Amp
Order: ICL-01A 39 CD 4433 Counter \& 7 seg. decoder/driver IC House \# Order: ICL-4433 . 69

\section*{24 VAC @ 3A} \(12 V A C @ 1 A\)
\(6 V A C @ 2 A\)
Completely Shielded 115 VAC Primary 7.55 ea \(10 / 68.50\) 7.55 ea \(10 / 68.50\)
ORDER: TN-30 memory chip switches, and a preprogrammed 2708 Addity chip (ROM) with 35 additional tunes; ( 60 total) Additional ROM's are available for 9.95 to 14.95 ea. January 31, 1984! 12VAC transformer is available Order TN-20 2.60 ea.

SEND SOK REFLNDABIE ON IST ORDER. FREE W ORDER




New for our readers....A mailorder source of software for Atari 400, Atari 800, IBM P C, Commodore VIC-20, Apple II, and other personal computer systems.

\section*{IBM PC}


\section*{\(\square\) DEADLINE by In-} focom ... List \$49.95. Our price ... \(\$ 43.00\). A locked door. A dead man. You have 12 hours to solve the mystery. One false move, and the killer strikes again. (IBM P C, 48k, disc) \(\square\) ALGEBRA, Vol. 1 by Eduware ... List \(\$ 39.95\). Our price \(\$ 34.00\). A first year algebra tutorial covering definitions, number line operations, sets, etc. (IBM P C, 48 k , color grpahics, disc)


\section*{MICROCOM} MICRO/TERMINAL by Microcom ... List \$94.95. Our price ... \(\$ 83.00\). Allows access to remote mainframes and minis, information data banks, and other personal computers. (IBM P C, disc)

PCTUTOR
\(\square\) PC TUTOR by Comprehensive Software ... List \$79.95. Our price ... \(\$ 69.00\). Interactive program teaches you how to use your IBM Personal Computer, including hardware and software. (IBM P C, 64k, disc)

\section*{Radio-Electronics Software Store \\ 200 Park Avenue South}

New York, NY 10003

\section*{Number of items ordered \\ }

Name
Total Price of Software
\$
Address
Sales Tax (NY State Residents Must Include)
Shipping ( \(\$ 2.00\) per item)
TOTAL ENCLOSED (Sorry, No COD's)
City

APPLE

\(\square\) PRISONER2 by Interactive Fantasies ... List \$32.95. Our price ... \(\mathbf{\$ 2 8 . 0 0}\). Escape is hardly possible. The island keeps you under surveillance. Just try and get out! (Apple II, 48k, disc)
\(\square\) PRISONER2 by Interactive Fantasies ... List \$39.95. Our price ... \$34.00. (Atari disc)
THE MASK OF THE SUN by Ulitrasoft Inc ... List \$39.95. Our price ... \(\$ 34.00\). An animated adventure through a series of hi-res screens. An ultimate adventure challenge. (Apple II, 48k, disc)

\section*{COMMODORE VIC-20}

\(\square\) HOUSEHOLD FINANCE by Creative Software ... List \(\$ 17.95\). Our price ... \(\$ 15.00\). Home utility program records and analyzes your monthly income, expenses and budget in 16 categories. (Commodore VIC-20 tape cassette)
\(\square\) HOME OFFICE by Creative
Software ... List \$29.95. Our price ... \(\$ 25.00\). Combines VICPRO, a flexible and efficient word processor with VICDATA a powerful and sophisticated information storage and retrieval system. (Commodore VIC-20, cassette tape 8 k additional memory required)

\section*{ATARI}

\(\square\) SUBMARINE COMMANDER by Thorn EMI ... List \(\$ 49.95\). Our price ... \(\$ 43.00\). A submarine patrol simulator to hunt and destroy enemy ships. 9 skill levels. Plug-in cartridge. (Atari Cartridge 400/800)

\section*{APPLE}
\(\square\) MINER 2049 by MicroLab List \(\$ 39.95\). Our price \(\$ 34.00\). Chase into a Uranium mine thru 10 levels of traps and capture Yukon Yohan. Scale ladders, jump from moving platforms, and win-if you can. (Apple II, 48k, disc)

ROME OFFE


CIAN by Penguin Software List \(\$ 59.95\). Our price \$53.00. Make your own animated graphics. Handles up to 32 independent objects. Stores hundreds of color pictures. (Apple II, 48k, disc)
\(\square\) SAT WORD ATTACK 549.00 tutorial for mastering vocabulary, deciphering new or unfamiliar words, and taking tests. (Apple II, disc)

\(\square\) RENDEZVOUS by Eduware ... List \(\$ 39.95\). Our price . \(\$ 34.00\). In four phases, simulates an actual space-shuttle flight from Earth Liftoff through Orbital Rendezvous and Approach to Alignment Docking with a space station. Hi-rez graphics (Apple II, disc)

\(\square\) SHAMUS by Human Engineered Software ... List \(\$ 39.94\). Our price ... \(\$ 34.00\). Only you can stop the Shadow's mad reign of terror. Two levels with 20 rooms each. A joystick challenge. (Commodore VIC-20 cartridge)

\(\qquad\) ZIP
rity

\(\square\)



MINIATURE TOGGLE SWITCHES ALL ARE RATED 5 AMPS @ 125 VAC


\section*{ACTIVE RECEIVING ANTENNA Gives excellent reception, 50 KHz to 30 MHz .}

New MFJ-1024 Active Receiving Antenna mounts outdoors away from electrical noise for maximum signal. Gives excellent reception of 50 KHz to 30 MHz signals. Equivalent to wire hundreds of feet long. Use any SWL, MW, BCB, VLF or Ham receiver
High dynamic range RF amplifier. 54 in. whip. 50 foot coax. 20 dB attenuator prevents receiver overload. Switch between two receivers. Select auxiliary or active antenna. Gain control. "ON' LED. Remote unit, \(3 \times 2 \times 4\) in. Control, \(6 \times 2 \times 5\) in. 12 VDC or 110 VAC with
 return within 30 days for refund (less shipping) One year unconditional guarantee.
Order today. Call TOLL FREE 800-647-1800. Charge VISA, MC. Or mail check, money order Write for free catalog. Over 100 products.

\section*{CALL TOLL FREE . . 800-647-1800}

Call 601-323-5869 in Miss., outside continental USA, tech/order/repair info. TELEX 53-4590.

\section*{ENTERPRISES,
Box 494, Mississippi State, MS 39762 \\ CIRCLE 66 ON FREE INFORMATION CARD}


CIRCLE 51 ON FREE INFORMATION CARD

\section*{OPPORTUIITY WITLOUT RISK.}

\section*{The biggest improvement in Savings Bonds in 40 years.}

\section*{New Variable Interest Rate.}

Looking for an ideal investment? One with a variable interest rate? But one where rates can't drop below a certain level?

Well, there is one available to everyone, even if you have only \(\$ 25\) to invest. It's U.S. Savings Bonds. Now changed from a fixed to a variable interest rate, with no limit on how much you can earn.

\section*{A Guaranteed Minimum.}

Although interest rates will fluctuate, you're protected by a guaranteed minimum. And if you hold your Bond to maturity, you'll double your money. You may do even better.

Take another look at Savings Bonds. We did, and made them better.

\section*{}

\section*{Ad}

A public service of this publication and The Advertising Council.

\section*{SHACK HAS THE PARTS YOU NEED AT LOW PRICES!}

Highest Quality!

\section*{Special-Purpose ICs}

1295
(A) Voice Synthesizer Set. Get into solid-state talk! The SPO256 speech processor, a 28 -pin NMOS LSI device, uses a stored program to synthesize speech or complex sounds. Works with a few simple support parts, or use the 14 -pin SPR1 6 serial speech ROM, included, for computer interfacing. With data. 276-1783 ....... . Set 12.95
B MF10 Dual Switched Filter. Versatile CMOS building block for active filters-eliminates the need for expensive, close-tolerance parts. High performance, yet very easy to use. 20 -pin DIP with data. 276-2329

Voltage Regulator ICs
\begin{tabular}{|c|c|c|c|}
\hline Type & Adjustable & Cat. No. & Each \\
\hline LM723 & 0 to 40 VDC & \(276-1740\) & .89 \\
LM317T & 1.2 to 37 VDC & \(276-1778\) & 2.79 \\
\hline \hline Type & Fixed Output & Cat. No. & Each \\
\hline 7805 & +5 VDC & \(276-1770\) & 1.59 \\
7812 & +12 VDC & \(276-1771\) & 1.59 \\
7815 & +15 VDC & \(276-1772\) & 1.59 \\
7905 & -5 VDC & \(276-1773\) & 1.59 \\
7912 & -12 VDC & \(276-1774\) & 1.59 \\
\hline
\end{tabular}

4000-Series CMOS ICs
With Pin-Out and Specs
\begin{tabular}{|l|r|r|}
\hline Type & Cat. No. & Each \\
\hline 4001 & \(276-2401\) & .79 \\
4011 & \(276-2411\) & .79 \\
4013 & \(276-2413\) & .99 \\
4017 & \(276-2417\) & 1.49 \\
4023 & \(276-2423\) & .99 \\
4049 & \(276-2449\) & .99 \\
4066 & \(276-2466\) & .99 \\
\hline
\end{tabular}

TTL Digital ICs
With Pin-Out and Specs
\begin{tabular}{|c|c|r|}
\hline Type & Cat. No. & Each \\
\hline 7400 & \(276-1801\) & .59 \\
7404 & \(276-1802\) & .79 \\
7408 & \(276-1822\) & .79 \\
7447 & \(276-1805\) & 1.19 \\
7490 & \(276-1808\) & .89 \\
\hline
\end{tabular}

Replacement Transistors
\begin{tabular}{|ll|l|r|}
\hline \multicolumn{2}{|c|}{ Type } & & Cat. No. \\
\hline 2N1305 & PNP & \(276-2007\) & 1.19 \\
MPS222A & NPN & \(2766-2009\) & .79 \\
PN2484 & PNP & \(276-2010\) & .89 \\
MPS3904 & NPN & \(276-2016\) & .69 \\
TIP31 & NPN & \(276-2017\) & .99 \\
\hline TIP3055 & NPN & \(276-2020\) & 1.59 \\
MPS2907 & PNP & \(276-2023\) & .79 \\
MJE34 & PNP & \(276-2027\) & 1.49 \\
2N3053 & NPN & \(276-2030\) & .89 \\
MPS3638 & PNP & \(276-2032\) & .79 \\
\hline TIP120 & NPN & \(276-2068\) & 1.29 \\
2N3055 & NPN & \(276-2041\) & 1.99 \\
MJ2955 & PNP & \(276-2043\) & 2.19 \\
2N4124 & NPN & \(276-2057\) & .59 \\
2N4401 & NPN & \(276-2058\) & .59 \\
\hline MPSA06 & NPN & \(276-2059\) & .59 \\
MPSA13 & NPN & \(276-2060\) & 59 \\
MPSA42 & NPN & \(276-2061\) & .69 \\
MU4891 & UJT & \(276-2029\) & .99 \\
2SD313 & NPN & \(276-2048\) & 1.79 \\
\hline 2SC945 & NPN & \(276-2051\) & .79 \\
2SC1308 & NPN & \(276-2055\) & 7.95 \\
\hline 2N3819 & N-FET & \(276-2035\) & .99 \\
MPF102 & N-FET & \(276-2062\) & .99 \\
\hline
\end{tabular}

Factory Fresh!
Operational Amplifiers
\begin{tabular}{|lr|l|r|}
\hline \multicolumn{2}{|c|}{ Type } & Cat. No. & Each \\
\hline 741 & (Single) & \(276-007\) & .79 \\
MC1458 & (Dual) & \(276-038\) & .99 \\
LM324 & (Quad) & \(276-1711\) & 1.29 \\
TL082 & (Dual) & \(276-1715\) & 1.89 \\
TL084 & (Quad) & \(276-1714\) & 2.99 \\
LM3900 & (Quad) & \(276-1713\) & 1.39 \\
LM339 & (Quad) & \(276-1712\) & 1.49 \\
\hline
\end{tabular}

\section*{Audio Power Amplifiers}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Type } & Cat. No. & Each \\
\hline LM383/TDA2002 & \(276-703\) & 3.19 \\
LM386 & \(276-1731\) & 1.09 \\
TA7205AP & \(276-705\) & 2.99 \\
LM380 & \(276-706\) & 1.59 \\
\hline
\end{tabular}

Tantalum Capacitors
- 20\% Tolerance
- Standard IC Pin Spacing
\begin{tabular}{|l|c|c|c|}
\hline\(\mu \mathrm{F}\) & WVDC & Cat. No. & Each \\
\hline 0.1 & 35 & \(272-1432\) & .49 \\
0.47 & 35 & \(272-1433\) & .49 \\
1.0 & 35 & \(272-1434\) & .49 \\
2.2 & 35 & \(272-1435\) & .59 \\
10 & 16 & \(272-1436\) & .69 \\
22 & 16 & \(272-1437\) & .79 \\
\hline
\end{tabular}

Electrolytic Capacitors
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{4}{|c|}{ Axial Leads } \\
\hline\(\mu \mathrm{F}\) & WVDC & Cat. No. & Each \\
\hline 4.7 & 35 & \(272-1012\) & .49 \\
10 & 35 & \(272-1013\) & .59 \\
22 & 35 & \(272-1014\) & .69 \\
47 & 35 & \(272-1015\) & .69 \\
100 & 35 & \(272-1016\) & .79 \\
\hline 220 & 35 & \(272-1017\) & .89 \\
470 & 35 & \(272-1018\) & .99 \\
1000 & 35 & \(272-1019\) & 1.59 \\
2200 & 35 & \(272-1020\) & 2.49 \\
3300 & 35 & \(272-1021\) & 2.99 \\
\hline 4700 & 35 & \(272-1022\) & 3.59 \\
470 & 50 & \(272-1046\) & 1.59 \\
1000 & 50 & \(272-1047\) & 1.99 \\
2200 & 50 & \(272-1048\) & 3.49 \\
\hline
\end{tabular}

PC-Mount Leads
\begin{tabular}{|l|c|c|c|}
\hline\(\mu \mathrm{F}\) & WVDC & Cat. No. & Each \\
\hline 220 & 16 & \(272-956\) & .79 \\
470 & 16 & \(272-957\) & .89 \\
1000 & 16 & \(272-958\) & .99 \\
4.7 & 35 & 272.1024 & .49 \\
10 & 35 & \(272-1025\) & .59 \\
\hline 22 & 35 & \(272-1026\) & .69 \\
47 & 35 & \(272-1027\) & .69 \\
100 & 35 & \(272-1028\) & .79 \\
220 & 35 & \(272-1029\) & 89 \\
470 & 35 & \(272-1030\) & .99 \\
\hline 1000 & 35 & \(272-1032\) & 1.59 \\
100 & 50 & \(272-1044\) & 89 \\
\hline
\end{tabular}

SPST DIP Switches (C) Panese

\section*{ITIIITI}

149


For digital or low-current switching. Mount in DIP sockets or on PC boards. Style may vary \begin{tabular}{|c|c|c|c|c|}
\hline Fig. & Positions & Fits Socket & Cat. No. & Each \\
\hline C & 8 & 16 -pin DIP & \(275-1301\) & 1.99 \\
\hline
\end{tabular}

No Mail-Order Delays!

\section*{Computer Connectors}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Type } & Positions & Cat. No & Each \\
\hline ID Card Edge & 34 & \(276-1564\) & 4.95 \\
ID Card Edge & 50 & \(276-1566\) & 4.95 \\
Card-Edge Socket & 44 & \(276-1551\) & 2.99 \\
ID D-Sub Male & 25 & \(276-1559\) & 4.99 \\
\hline ID D-Sub Female & 25 & \(276-1565\) & 4.99 \\
Solder D-Sub Male & 25 & \(276-1547\) & 2.99 \\
\begin{tabular}{l} 
Solder D-Sub \\
Female \\
Hood
\end{tabular} & 25 & \(276-1548\) & 3.99 \\
\hline
\end{tabular}

\section*{Power Transformers}

120VAC Primaries
\begin{tabular}{|c|c|l|l|c|}
\hline Type & Volts & \multicolumn{1}{|c|}{ Current } & Cat. No. & Each \\
\hline Mini & 6.3 & 300 mA & \(273-1384\) & 2.59 \\
Mini & 12.0 & 300 mA & \(273-1385\) & 2.79 \\
Mini & 24.0 & 300 mA & \(273-1386\) & 2.99 \\
Mini & 12.0 & CT 450 mA & \(273-1365\) & 3.59 \\
Mini & 24.0 & CT 450 mA & \(273-1366\) & 3.99 \\
\hline Std. & 6.3 & 1.2 A & \(273-050\) & 3.79 \\
Std & 12.6 CT & 1.2 A & \(273-1505\) & 3.99 \\
Std. & 25.2 & 1.2 A & \(273-1480\) & 4.39 \\
H-D & 12.6 CT & 3.0 A & \(273-1511\) & 5.99 \\
H-D & 25.2 CT & 2.0 A & \(273-1512\) & 6.29 \\
H-D & 18.0 CT & 2.0A & \(273-1515\) & 6.99 \\
\hline
\end{tabular}

1/4-Watt, 5\% Resistors \(39^{\text {c Pkg. of } 5}\)
\begin{tabular}{|c|c|c|c|}
\hline Ohms & Cat. No. & Ohms & Cat. No. \\
\hline 10 & 271-1301 & 10k & 271-1335 \\
\hline 100 & 271-1311 & 15k & 271-1337 \\
\hline 150 & 271-1312 & 22k & 271-1339 \\
\hline 220 & 271-1313 & 27k & 271-1340 \\
\hline 270 & 271-1314 & 33k & 271-1341 \\
\hline 330 & 271-1315 & 47k & 271-1342 \\
\hline 470 & 271-1317 & 68k & 271-1345 \\
\hline 1k & 271-1321 & 100k & 271-1347 \\
\hline 1.8 k & 271-1324 & 220k & 271-1350 \\
\hline 2.2 k & 271-1325 & 470k & 271-1354 \\
\hline 3.3 k & 271-1328 & 1 meg & 271-1356 \\
\hline 4.7k & 271-1330 & 10 meg & 271-1365 \\
\hline 6:8k & 271-1333 & - & - \\
\hline
\end{tabular}

21-Range, 30,000 Ohms/Volt Multitester

\section*{4995}
- \(5^{\prime \prime}\) Color-Coded Scale

\section*{- Overload Protected}

Our best VOM! Features "beep" continuity function and easy access to battery/
fuse compartment. Mea-
sures AC and DC volts, DC
current up to 10 amps, resistance and decibels.
 er's manual, Batteries extra. 22-210 .... . 49.95

\section*{Home Computer Programs}

Reg. 7.95

\section*{Save \({ }^{5} 5\) 295}

For TRS-80 16 K
Models I, III, 4


Listings for over 75 useful programs-financial, automotive, kitchen helpmates, filing, math tutoring, metric and temperature conversions, games and more. 330 pages.
62-2069
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{6800} \\
\hline 68000 & 59.95 \\
\hline 6800 & 3.95 \\
\hline 6802 & 7.95 \\
\hline 6803 & 19.95 \\
\hline 6808 & 13.90 \\
\hline 6809E & 19.95 \\
\hline 6809 & 11.95 \\
\hline 6810 & 2.95 \\
\hline 6820 & 4.35 \\
\hline 6821 & 3.25 \\
\hline 6828 & 14.95 \\
\hline 6840 & 12.95 \\
\hline 6843 & 34.95 \\
\hline 6844 & 25.95 \\
\hline 6845 & 14.95 \\
\hline 6847 & 11.95 \\
\hline 6850 & 3.25 \\
\hline 6852 & 5.75 \\
\hline 6860 & 9.95 \\
\hline 6875 & 6.95 \\
\hline 6880 & 2.25 \\
\hline 6883 & 22.95 \\
\hline 68047 & 24.95 \\
\hline 68488 & 19.95 \\
\hline \multicolumn{2}{|l|}{\(6800=1 \mathrm{MHZ}\)} \\
\hline 68B00 & 10.95 \\
\hline 68802 & 22.25 \\
\hline 68809 E & 29.95 \\
\hline \(68 \mathrm{B09}\) & 29.95 \\
\hline 68B10 & 6.95 \\
\hline \(68 \mathrm{B21}\) & 6.95 \\
\hline 68B40 & 19.95 \\
\hline 68B45 & 19.95 \\
\hline 68B50 & 5.95 \\
\hline \multicolumn{2}{|l|}{\(68 \mathrm{B00}=2 \mathrm{MHZ}\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{8200} & \multicolumn{2}{|l|}{\(\geq-80\)} \\
\hline 8202 & 24.95 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{2.5 Mhz}} \\
\hline 8203 & 39.95 & & \\
\hline 8205 & 3.50 & Z80-CPU & 3.95 \\
\hline 8212 & 1.80 & Z80-CTC & 4.49 \\
\hline 8214 & 3.85 & Z80-DART & 10.95 \\
\hline 8216 & 1.75 & Z80-DMA & 14.95 \\
\hline 8224 & 2.25 & Z80-PIO & 4.49 \\
\hline 8226 & 1.80 & Z80-SIO/0 & 16.95 \\
\hline 8228 & 3.49 & Z80-SIO/1 & 16.95 \\
\hline 8237 & 19.95 & Z80-SIO/2 & 16.95 \\
\hline \(8237-5\) & 21.95 & Z80-SIO/9 & 16.95
16.95 \\
\hline 8238 & 4.49 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{4.0 Mhz}} \\
\hline 8243 & 4.45 & & \\
\hline 8250 & 10.95 & Z80A-CPU & 4.95 \\
\hline 8251 & 4.49 & Z80A-CTC & 4.95 \\
\hline 8253 & 6.95 & Z80A-DART & 11.95 \\
\hline 8253-5 & 7.95 & Z80A-DMA & 16.95 \\
\hline 8255 & 4.49
5 & & 4.95 \\
\hline \({ }^{8255-5}\) & 5.25
7.95 & Z80A-SIO/0 & 4.95
16.95 \\
\hline 8257 & 7.95 & Z80A-SIO/0 & 16.95
16.95 \\
\hline 8257-5 & 8.95 & Z80A-SIO/1 & 16.95 \\
\hline 8259 & 6.90 & Z80A-SIO/2 & 16.95 \\
\hline 8259-5 & 7.50 & Z80A-SIO/9 & 16.95 \\
\hline 8271 & 79.95
39.95 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{6.0 Mhz}} \\
\hline 8272
8275 & 39.95
29.95 & & \\
\hline 8279 & 8.95 & Z80B-CTC & 13.95 \\
\hline 8279-5 & 10.00 & Z80B-PIO & 13.95 \\
\hline 8282 & 6.50 & & 19.95 \\
\hline 8283 & 6.50 & Z80B-DART & 19.95 \\
\hline 8284 & 5.50 & Z80B-SIO/2 & 39.95 \\
\hline 8286 & 6.50 & \multicolumn{2}{|l|}{ZILOG} \\
\hline 8287 & 6.50 & & \\
\hline 8288 & 25.00 & \[
\begin{aligned}
& \text { Z6132 } \\
& \text { Z8671 }
\end{aligned}
\] & \[
\begin{aligned}
& 34.95 \\
& 39.95
\end{aligned}
\] \\
\hline 8289 & 49.95 & 28671 & 39.95 \\
\hline
\end{tabular}

STATIC RAMS
2101
5101
\(2102-1\)
\(2102 \mathrm{~L}-4\)
\(2102 \mathrm{~L}-2\)
2111
2112
2114
\(2114-25\)
\(2114 L-4\)
\(2114 \mathrm{~L}-3\)
\(2114 \mathrm{~L}-2\)
TC5514
TC5516
2147
TMS4044-4
TMS4044-3
TMS4044-2
MK4118
TMM2016-200
TMM2016-150
TMM2016-100
HM6116-4
HM6116-3
HM6116-2
HM6116LP-4
HM6116LP-3
HM6116LP-2
Z-6132
HM6264
\(256 \times 4\) (450ns)
\(256 \times 4\) (450ns) (cmos) \(1024 \times 1(450 \mathrm{~ns})\)
\(1024 \times 1(450 \mathrm{~ns})\)
\(\begin{aligned} & 1024 \times 1(450 \mathrm{~ns}) \text { (LP) } \\ & 1024 \times 1 \\ & 250(250 \mathrm{~ns}) \\ & \text { (LP) }\end{aligned}\) \(1024 \times 1\) (250ns)
\(256 \times 4(450 \mathrm{~ns})\)
\(255 \times 4(450 \mathrm{~ns})\) \(256 \times 4(450 \mathrm{~ns})\)
\(1024 \times 4(450 \mathrm{~ns})\) \(1024 \times 4(450 \mathrm{~ns})\)
\(1024 \times 4(250 \mathrm{~ns})\) \(1024 \times 4\) (450ns) (L \(1024 \times 4(300 \mathrm{~ns})(\) LP)
\(1024 \times 4(200 \mathrm{~ns})(L P)\) \(024 \times 4\) (650ns) (cmos) \(2048 \times 8(250 \mathrm{~ns})(\mathrm{cmos})\) \(4096 \times 1\) (55ns) \(\begin{array}{ll}\text { TMS4044-4 } & 4096 \times 1 \text { (450ns) } \\ \text { TMS4044-3 } & 4096 \times 1 \text { (300ns) }\end{array}\) TMS4044-2 MK4118 TMM2016-200
TMM2016-150 \(024 \times(200 \mathrm{~ns})\) \(1024 \times 8\) (250ns) TMM2016-100 \(2048 \times 8\) (150ns) HM6116-4 \(2048 \times 8\) (100ns) HMS116-2048 \(\times 8\) (150ns) (cmos) HM6116LP-4 \(2048 \times 8\) (200ns) (cmos)(LP HM6116LP-2 \(2048 \times 8\) (120ns) (cmos)(LP) HM6264
\begin{tabular}{lll} 
& \\
TMS4027 & \(4096 \times 1\) & \((250 \mathrm{~ns})\) \\
UPD411 & \(4096 \times 1\) & \((300 \mathrm{~ns})\) \\
MM5280 & \(4096 \times 1\) & \((300 \mathrm{~ns})\) \\
MK4108 & \(8192 \times 1\) & \((200 \mathrm{~ns})\) \\
MM5298 & \(8192 \times 1\) & \((250 \mathrm{~ns})\) \\
\(4116-300\) & \(16384 \times 1\) & \((300 \mathrm{~ns})\) \\
\(4116-250\) & \(16384 \times 1\) & \((250 \mathrm{~ns})\) \\
\(4116-200\) & \(16384 \times 1\) & \((200 \mathrm{~ns})\) \\
\(4116-150\) & \(16384 \times 1\) & \((150 \mathrm{~ns})\) \\
\(4116-120\) & \(16384 \times 1\) & \((120 \mathrm{~ns})\) \\
2118 & \(16384 \times 1\) & \((150 \mathrm{~ns})(5 \mathrm{v})\) \\
MK4332 & \(32768 \times 1\) & \((200 \mathrm{~ns})\) \\
\(4164-200\) & \(65536 \times 1\) & \((200 \mathrm{~ns})(5 \mathrm{v})\) \\
\(4164-150\) & \(65536 \times 1\) & \((150 \mathrm{~ns})(5 v)\) \\
MCM6665 & \(65536 \times 1\) & \((200 \mathrm{~ns})(5 v)\) \\
TMS4164-15 & \(65536 \times 1\) & \((150 \mathrm{~ns})(5 \mathrm{v})\)
\end{tabular}

EPROMS

\section*{LP = Low Power \\ TMASO27}
\(5 \mathrm{~V}=\) single 5 volt supply

\title{
\(27322_{32 \mathrm{k} \text { eroom }} \$ 495\) 2784 атк ервом \(\$ 995\)
}

CMOS

\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{7400} & \\
\hline 7400 & . 19 & 74123 & . 49 \\
\hline 7401 & . 19 & 74125 & . 45 \\
\hline 7402 & . 19 & 74126 & . 45 \\
\hline 7403 & . 19 & 74132 & . 45 \\
\hline 7404 & . 19 & 74136 & . 50 \\
\hline 7405 & . 25 & 74143 & 2.95 \\
\hline 7406 & . 29 & 74145 & . 60 \\
\hline 7407 & . 29 & 74147 & 1.75 \\
\hline 7408 & . 24 & 74148 & 1.20 \\
\hline 7409 & . 19 & 74150 & 1.35 \\
\hline 7410 & . 19 & 74151 & . 55 \\
\hline 7411 & . 25 & 74153 & . 55 \\
\hline 7413 & . 35 & 74154 & 1.25 \\
\hline 7414 & . 49 & 74155 & . 75 \\
\hline 7416 & . 25 & 74157 & . 55 \\
\hline 7417 & . 25 & 74159 & 1.65 \\
\hline 7420 & . 19 & 74160 & . 85 \\
\hline 7421 & . 35 & 74161 & . 69 \\
\hline 7425 & . 29 & 74163 & . 69 \\
\hline 7427 & . 29 & 74164 & . 85 \\
\hline 7430 & . 19 & 74165 & . 85 \\
\hline 7432 & . 29 & 74166 & 1.00 \\
\hline 7437 & . 29 & 74167 & 2.95 \\
\hline 7438 & . 29 & 74170 & 1.65 \\
\hline 7442 & . 49 & 74173 & . 75 \\
\hline 7445 & . 69 & 74174 & . 89 \\
\hline 7446 & . 69 & 74175 & . 89 \\
\hline 7447 & . 69 & 74177 & . 75 \\
\hline 7448 & . 69 & 74181 & 2.25 \\
\hline 7451 & . 23 & 74184 & 2.00 \\
\hline 7473 & . 34 & 74185 & 2.00 \\
\hline 7474 & . 33 & 74191 & 1.15 \\
\hline 7475 & . 45 & 74192 & . 79 \\
\hline 7476 & . 35 & 74193 & . 79 \\
\hline 7482 & . 95 & 74194 & . 85 \\
\hline 7483 & . 50 & 74195 & . 85 \\
\hline 7485 & . 59 & 74197 & . 75 \\
\hline 7486 & . 35 & 74198 & 1.35 \\
\hline 7489 & 2.15 & 74221 & 1.35 \\
\hline 7490 & . 35 & 74246 & 1.35 \\
\hline 7492 & . 50 & 74247 & 1.25 \\
\hline 7493 & . 35 & 74259 & 2.25 \\
\hline 7495 & . 55 & 74273 & 1.95 \\
\hline 7497 & 2.75 & 74276 & 1.25 \\
\hline 74100 & 1.75 & 74279 & . 75 \\
\hline 74107 & . 30 & 74366 & . 65 \\
\hline 74109 & . 45 & 74367 & . 65 \\
\hline 74116 & 1.55 & 74368 & . 65 \\
\hline 74121 & . 29 & 74393 & 1.35 \\
\hline 74122 & . 45 & & \\
\hline
\end{tabular}

74S00

\section*{\(\begin{array}{llll}74 S 00 & .32 & 74 S 168 & 3.95\end{array}\)} \(\begin{array}{llll}74 S 02 & .35 & 74 S 169 & 3.95\end{array}\) 74S03 \(\begin{array}{llll}74804 & .35 & 748174 & .95\end{array}\) \(\begin{array}{lllr}74 \text { S05 } & .35 & 74 \text { S175 } & .95 \\ 748181 & 3.95\end{array}\) \(\begin{array}{llll}74 S 08 & .35 & 74 S 182 & 2.95 \\ 74809 & .40 & 745188 & 1.95\end{array}\) \(\begin{array}{llll}74 S 09 & .40 & 74 S 188 & 1.95\end{array}\) \(\begin{array}{llll}74 S 10 & .35 & 74 S 189 & 6.95 \\ 74811 & 35 & 748194 & 1.49\end{array}\) \(\begin{array}{llll}74 S 11 & .35 & 74 S 194 & 1.49 \\ 74 S 15 & .35 & 74 S 195 & 1.49\end{array}\) \(\begin{array}{llll}74 \mathrm{~S} 15 & .35 & 74 \mathrm{~S} 195 & 1.49 \\ 74 \mathrm{~S} 20 & .35 & 74 \mathrm{~S} 196 & 1.49\end{array}\) \(\begin{array}{llll}74 \mathrm{~S} 22 & .35 & 74 \mathrm{~S} 197 & 1.49 \\ 74 \mathrm{~S} 30 & .35 & 74 \mathrm{~S} 201 & 6.95\end{array}\) \(\begin{array}{llll}74 S 32 & .40 & 74 S 225 & 7.95\end{array}\) \(\begin{array}{llll}74337 & .88 & 74 S 240 & 2.20\end{array}\) \(\begin{array}{llll}74838 & .85 & 74 S 241 & 2.20\end{array}\) \(\begin{array}{llll}74 S 40 & .35 & 74 S 244 & 2.20 \\ 74 S 51 & .35 & 74 S 251 & .95\end{array}\) \(\begin{array}{lll}74 S 51 & .35 & 74 S 251 \\ 74564 & .40 & 74 S 253\end{array}\) \(\begin{array}{llll}74 S 65 & .40 & 748257 & .95 \\ 74 S 74 & .50 & 748258 & .95\end{array}\) \(\begin{array}{rrrr}74 S 74 & .50 & 74 S 258 & .95 \\ 74 S 85 & 1.99 & 74 S 260 & 79\end{array}\) \(\begin{array}{lllll}74586 & .50 & 745273 & 2.45\end{array}\) \(\begin{array}{llll}74 S 112 & .50 & 74 S 274 & 19.95\end{array}\) \(74 S 113 \quad .50 \quad 74 \mathrm{~S} 27519.95\) \(\begin{array}{lllll}74 S 114 & .55 & 74 S 280 & 1.95\end{array}\) \(\begin{array}{llll}74 S 124 & 2.75 & 74 S 287 & 1.90\end{array}\) \(\begin{array}{llll}74 S 132 & 1.24 & 745288 & 1.90\end{array}\) \(\begin{array}{llll}745133 & .45 & 745289 & 6.89\end{array}\) \(\begin{array}{llll}74 S 134 & .50 & 745301 & 6.89 \\ 74 S 135 & .89 & 745373 & 2.45\end{array}\) \(\begin{array}{llll}74 S 135 & .89 & 74 S 373 & 2.45 \\ 745138 & .85 & 74 S 374 & 2.45\end{array}\) \(\begin{array}{llll}745138 & .85 & 74 S 374 & 2.45 \\ 74 S 139 & 85 & 745381 & 7.95\end{array}\) \(\begin{array}{llll}74 S 139 & .85 & 74 S 381 & 7.95 \\ 74 S 140 & .55 & 748387 & 1.95\end{array}\) \(\begin{array}{llll}74 S 140 & .55 & 74 S 387 & 1.95 \\ 74 S 151 & .95 & 74 S 412 & 2.98\end{array}\) \(\begin{array}{llll}745151 & .95 & 74 S 412 & 2.98 \\ 74 S 153 & .95 & 748471 & 4.95\end{array}\) \(\begin{array}{llll}74 S 153 & .95 & 748471 & 4.95 \\ 745157 & .95 & 748472 & 4.95\end{array}\) \(\begin{array}{llll}74 S 158 & .95 & 748474 & 4.95\end{array}\) \(\begin{array}{llllll}745161 & 1.95 & 748482 & 15.25\end{array}\) \(7451621.95 \quad 745570\)
\(\begin{array}{lllll}745163 & 1.95 & 745571 & 2.95\end{array}\)


\section*{RCA} isisin in io

LM15
LM180
LM181
LM1830
LM187
LM1872
LM1877
LM18
LM18
ULN2
LM2877
LM2878
LM29
LM29
LM39
LM39
LM39
LM39
LM3911
LM39
LM39
MC402
MC40
RC4136
RC4151
LM4250
LM45
RC45
LM13
LM13
LM1370
TO-3 TI \(\begin{array}{lllll}\text { 3.10 CA } 3023 & 2.75 & \text { CA } 3082 & 1.65\end{array}\) 2.37 CA 303 8.25 CA 304
3.50 CA 305 \begin{tabular}{lll} 
& CA 3046 & 1.25 \\
\hline
\end{tabular} \begin{tabular}{llll}
3.50 & CA 3059 & 2.25 & CA 308 \\
\hline
\end{tabular} \(\begin{array}{lllll}\mathbf{5 . 4 9} & \text { CA } 3060 & 2.90 & \text { CA } 3089 & \mathbf{2 . 9 9}\end{array}\) \(\begin{array}{lllll}5.49 & \text { CA } 3065 & 1.75 & \text { CA } 3130 & 1.39 \\ 3.25 & \text { CA } 3080 & 1.10 & \text { CA } 3140 & 1.15\end{array}\) 1.95 CA 308 1.75 CA 1.75
2.49
2.05 2.05
2.25

85 TL494
(
\[
\begin{aligned}
& 4.2 \\
& 1.6!
\end{aligned}
\] -
\(T=T O-220\)
\(K=\) TO-3 FD100-8 \$189
 SS/DD
FD200-8
SHUGART 851 EQUIVALENT DS/DD 10 FOR \(\$ 220\) EA.
8" DRIVE SALE
\begin{tabular}{|c|c|}
\hline  &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|l|}{EXAR} \\
\hline & & \({ }^{3.75}\) \\
\hline rerard & \begin{tabular}{l} 
XR 2207 \\
\(\times R 2208\) \\
\hline
\end{tabular} & \begin{tabular}{l}
3.75 \\
3.75 \\
\hline
\end{tabular} \\
\hline cara & XR 2211 & 5.25 \\
\hline & XR 2240 & \({ }^{3.25}\) \\
\hline
\end{tabular}

\section*{ORDER 800-588-5000 gho- 8 B2-8978} \begin{tabular}{l}
071 \\
072 \\
074 \\
081 \\
082 \\
083 \\
\\
SV \\
\\
\hline
\end{tabular}


\title{
4000
}



GALL US FOR UOLUMIE QUOTES : Gomputer managed inventory - urrually no back ordars! - Fast service - most orders shilpoed within 24 hours!

\section*{CABINETS FOR 5¼ \({ }^{\prime \prime}\) DISK DRIVES}

CABINET \#1
s29.95
* DIMENSIONS \(85 \times 5^{15 / 16} \times 3^{15 / 16}\)
* COLOR MATCHES APPLE
* FITS STANDARD \(51 / 4^{\prime \prime}\) DRIVES, INCL. SHUGART
* INCLUDES MOUNTING

HARDWARE AND FEET
CABINET \#2 \(\mathbf{~} 79.00\)
\(\star\) COMPLETE WITH POWER SUPPLY, SWITCH, LINE CORD, FUSE \& STANDARD POWER CONNECTOR
* DIMENSIONS: \(111 / 2 \times 53 / 4 \times 315 / 6^{\prime \prime}\) \(\star+5 \mathrm{~V}\) @ 1 AMP, +12V @ 1.5 AMP * FITS STANDARD \(51 / 4^{\prime \prime}\) DRIVES
\(\star\) PLEASE SPECIFY GRAY OR TAN
NOTE: Please include sufficient amount for shipping on above items.

RESISTORS
\(1 / 4\) WATT 5\% CARBON FILM ALL STANDARD VALUES
FROM 1 OHM TO 10 MEG OHM

\section*{50 PCS. SAME VALUE} .025 100 PCS. SAME VALUE 1000 PCS. SAME VALUE


\section*{EDGE-CARD CONNECTORS}
\begin{tabular}{ll} 
S-100 ST & 3.95 \\
S-100 WW & 4.95 \\
72 pin ST & 6.95 \\
72 pin WW & 7.95 \\
50 & pin ST \\
44 pin ST & 4.95 \\
44 pin WW & 2.95 \\
44 pin SE & 4.95 \\
& 3.95
\end{tabular}

MUFFIN FANS NEW UN-USED 4.68" Square 14.95 \(\begin{array}{ll}\text { 4.68" Square } & 14.95 \\ \text { 3.125" Square } & 14.95\end{array}\)
OPTO-ISOLATORS

\section*{OP}

4N26

\section*{4N27}

\section*{4N28}

4N35
4N37
MCT-6
MCA-7
MCA-255
\(\mathrm{IL}-1\)
ILA-30
ILQ-74
H11C5
TIL-111
H14
TIL-113
TIL-13

TRANSISTORS
\begin{tabular}{lllr} 
& & \\
2N918 & .50 & MPS3706 & .15 \\
MPS918 & .25 & 2N3772 & 1.85 \\
2N2102 & .75 & 2N3903 & .25 \\
2N2218 & .50 & 2N3904 & .10 \\
2N2218A & .50 & 2N3906 & .10 \\
2N2219 & .50 & 2N4122 & .25 \\
2N2219A & .50 & 2N4123 & .25 \\
2N2222 & .25 & 2N4249 & .25 \\
PN2222 & .10 & 2N4304 & .75 \\
MPS2369 & .25 & 2N4401 & .25 \\
2N2484 & .25 & 2N4402 & .25 \\
2N2905 & .50 & 2N4403 & .25 \\
2N2907 & .25 & 2N4857 & 1.00 \\
PN2907 & .125 & PN4916 & .25 \\
2N3055 & .79 & 2N5086 & .25 \\
3055T & .69 & PN5129 & .25 \\
2N3393 & .30 & PN5139 & .25 \\
2N3414 & .25 & 2N5209 & .25 \\
2N3563 & .40 & 2N6028 & .35 \\
2N3565 & .40 & 2N6043 & 1.75 \\
PN3565 & .25 & 2N6045 & 1.75 \\
MPS3638 & .25 & MPS-A05 & .25 \\
MPS3640 & .25 & MPS-A06 & .25 \\
PN3643 & .25 & MPS-A55 & .25 \\
PN3644 & .25 & TIP29 & .65 \\
MPS3704 & .15 & TIP31 & .75 \\
& & TIP32 & .79 \\
& & &
\end{tabular}

CALL US FOR

ORDER
TOLL
File

\section*{UOLUNE QUOTES}


\section*{DISK DRIVES} TANDON
TM100-1 \(5 \%{ }^{\text {K }}\) (FOR IBM) SS/DD 229.00 TM100-2 \(5 \%{ }^{5} \%\) (FOR IBM) DS/DD 259.00 SHUGART
SA 400L \(5 \%\) ( 40 TRACK) SS/DD 199.95 SA 400 5\%" (35 TRACK) SS/DD 189.95

\section*{PERTEC}

FD-200 5\% ss/DD 179.95 FD-250 5\%" DS/DD 199.95 MPI
MP-52 \({ }_{5 \%}{ }^{\prime \prime}\) (FOR IBM) DS/DD 249.00 NOTE: Please Include sufficient amount for shippling on above items.

\section*{DIODES}
\begin{tabular}{llr} 
1N751 & 5.1 volt zener & .25 \\
1N759 & 12.0 volt zener & .25 \\
1N4148 & \((1 N 914)\) switching & \(25 / 1.00\) \\
1N4004 & 400PIV rectifier & \(10 / 1.00\) \\
KBP02 & 200PIV 1.5amp bridge & .45 \\
KBP04 & 400PIV 1.5amp bridge & .55 \\
VM48 & Dip-Bridge & .35 \\
\hline
\end{tabular}

\section*{BYPASS CAPS}
. 01 UF DISC
100/6.00
. 1 UF DISC
1 UF MONOLITHIC
RIBBON CABLE
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{c|}{ RIB } \\
\hline CONTACTS & \multicolumn{3}{|c|}{ SINGLE COLOR } & \multicolumn{2}{c|}{ COLOR CODED } \\
\hline 10 & \multicolumn{1}{c|}{} & \(10^{\prime}\) & \(1^{\prime}\) & \(10^{\prime}\) \\
\hline 10 & .50 & 4.40 & .83 & 7.30 \\
16 & .55 & 4.80 & 1.00 & 8.80 \\
20 & .65 & 5.70 & 1.25 & 11.00 \\
25 & .75 & 6.60 & 1.32 & 11.60 \\
26 & .75 & 6.60 & 1.32 & 11.60 \\
34 & .98 & 8.60 & 1.65 & 14.50 \\
40 & 1.32 & 11.60 & 1.92 & 16.80 \\
50 & 1.38 & 12.10 & 2.50 & 22.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{DESCRIPTION} & \multicolumn{2}{|l|}{SOLDER CUP} & \multicolumn{2}{|l|}{RIGHT ANGLE PC SOLDER} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { IDC } \\
& \text { RIBBON CABLE } \\
& \hline
\end{aligned}
\]} & \multicolumn{2}{|r|}{HOODS} \\
\hline & MALE & FEMALE & MALE & FEMALE & MALE & FEMALE & BLACK & GREY \\
\hline ORDER BY & DBxxP & DBxxS & DBxxPR & DBxxSR & IDBxx & IDBxxS & HOOD-B & HOOD \\
\hline CONTACTS 9 & 2.08 & 2.66 & 1.65 & 2.18 & 3.37 & 3.69 & - & 1.60 \\
\hline 15 & 2.69 & 3.63 & 2.20 & 3.03 & 4.70 & 5.13 & - & 1.60 \\
\hline 25 & 2.50 & 3.25 & 3.00 & 4.42 & 6.23 & 6.84 & 1.25 & 1.25 \\
\hline 37 & 4.80 & 7.11 & 4.83 & 6.19 & 9.22 & 10.08 & - & 2.95 \\
\hline 50 & 6.06 & 9.24 & - & - & - & - & - & 3.50 \\
\hline \multicolumn{9}{|c|}{For order instructions see "IDC Connectors" below.} \\
\hline \multicolumn{9}{|c|}{MOUNTING HARDWARE 1.00} \\
\hline
\end{tabular}

\section*{IDC CONNECTORS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline DESCRIPTION & SOLDER HEADER & RIGHT ANGLE
SOLDER HEADER & WW HEADER & RIGHT ANGLE WW HEADER & \[
\begin{array}{|c|}
\hline \text { RIBBON } \\
\text { HEADER SOCKET } \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \text { RIBBON } \\
& \text { HEADER } \\
& \hline
\end{aligned}
\] & RIBBON
EDGE CARD \\
\hline ORDER BY & IDHxxS & IDHxxSR & IDHxxW & IDHxxWR & IDSxx & IDMxx & IDExx \\
\hline CONTACTS 10 & . 82 & . 85 & 1.86 & 2.05 & 1.15 & - & 2.25 \\
\hline 20 & 1.29 & 1.35 & 2.98 & 3.28 & 1.86 & 5.50 & 2.36 \\
\hline 26 & 1.68 & 1.76 & 3.84 & 4.22 & 2.43 & 6.25 & 2.65 \\
\hline 34 & 2.20 & 2.31 & 4.50 & 4.45 & 3.15 & 7.00 & 3.25 \\
\hline 40 & 2.58 & 2.72 & 5.28 & 4.80 & 3.73 & 7.50 & 3.80 \\
\hline 50 & 3.24 & 3.39 & 6.63 & 7.30 & 4.65 & 8.50 & 4.74 \\
\hline
\end{tabular}

ORDERING INSTRUCTIONS: Insert the number of contacts in the position marked " \(x\) "" of the "order by" part number listed. Example: A 10 pin right angle solder style header would be IDH10SR.

\section*{VISIT OUR RETAIL STORE}

TERMS: Minimum order S10. For shipping and handling include \(\$ 2.50\) tor UPS Ground and \(\$ 3.50\) for UPS Air. Orders over 1 lb , and toreign orders may require additional shipping charges - please contact our saies department for the amount. CA residents must include \(6 \%\) sales tax, Bay Area and LA residents include \(6 \% \%\). Prices subject to change without notice. We are not responsible for typographical errors. We reserve the right to limit quantities and to substitute manutacturer. All merchandise subject to prior sale.

\title{
FOR APPLE COMTPUTER USERIS
}

\section*{JDR PRODUCTS} JDR HALF-HEIGHT DISK DRIVE
* 35 Track w/Apple Controller NEW \(\star 40\) Track Controller and DOS
Available (Call for Price) \(\$ 29995\) JDR 16K RAM CARD FOR APPLE II+ \begin{tabular}{l}
\(\star 2\) YEAR WARRANTY \\
tructions \(\ldots . . \$ 40.95\) \\
1 \\
\hline
\end{tabular} Kit with Instructions ....... \(\$ 40.95\)
Bare PC Card............ \(\$ 14.95\)

JDR COOLING FAN CLEARANCE SALE! * With Surge Protection
* Quantities Are Limited!


COALITOilill Resmonirs)

\section*{OTHER ACCESSORIES FOR APPLE II}

THUNDERCLOCK
\(\$ 129.95\)
* Real-Time Clock Calendar * Software Included * Mountain Software Compatible * BSR Control Options Available

KRAFT JOYSTICK
\(\$ 49.95\)
The Choice of Professionals"

\section*{MICROMAK}

VIEWMAX-80 NOW ONLY \({ }^{\$ 159}{ }^{95}\)
\(\star 80\) Column Card for Apple II+
* Video Soft Switch
* Inverse Video * 2 Year Warranty

VIEWMAX-80e NEW \({ }^{512995}\)
\(\star 80\) Column Card for Apple Ile
\(\star 64 \mathrm{~K}\) RAM Expandable to 128 K
64K RAM Upgrade \(\$ 47.60\)
GRAPHMAX ................ \({ }^{\text {s }} 129^{95}\)
* Hi Resolution Graphics
\(\star\) Printer Card
\(\star\) Centronics Parallel Interface
Graphmax with Color
\& Zoom Options
\(\$ 149.95\)
Z-MAX ........................... . \({ }^{\text {s }} 139^{95}\)
\(\star\) Z-80 Card for Apple II+
\(\star\) Use to Run CPM Programs

\section*{MA SVSTEMS}

FD-35 DISK DRIVE
\$229.95
* Shugart Mechanism - Made in U.S.A.
* Direct Replacement for Apple Disk II * 1 Year Warranty

CONTROLLER CARD
\$69.95
* One Year Warranty

\section*{APPLE COMPATIBLE POWER SUPPLY}
\(\star\) Use To Power Apple-Type Systems
\(\star+5 \mathrm{~V}\) @ \(5 \mathrm{~A}+12 \mathrm{~V}\) @ 3A
-5V@.5A -12V@.5A
\(\$ 7995\)
\(\star\) Instructions Included

MasterCard

VISA
ALL
menchandise 100\% quaraitited

PERISOFT
PRINTERLINK
\(\star\) Low Cost Centronics Parallel Interface with
Cable and Manual

\section*{MESSENGER}
* Serial Interface

Connects Virtually
Any Serial Device
\(\$ 9900\)

\section*{TIMELINK}
* Real-Time Clock Calendar with Alarm Feature
\(\$: 100\) ALL WITH ONE YEAR WARRANTY
MONITORS
MONOCHROME
BMC bm 12auw green 12" new . . . . . . . . . . . . . . \(\$ 89.95\)
NEC Jb1201M - 20 MHZ GREEN . . . . . . . . . . . . . . . . \(\$ 169.00\)
ZENITH zvm-121 - 15 mhz GREEN . . . . . . . . . . . . . . \({ }^{\text {s }} 99.00\)
TAXAN 18 MHz AMBER . . . . . . . . . . . . . . . . . . \({ }^{\text {s }}\) \$139.00
COLOR
ВМС вм-Au9191U сомposite 13" . ............ s279.00
AMDEK COLOR I-COMPOSITE . . . . . . . . . . . . \(\$ 335.00\)
NO C.O.D. ORDERS PLEASE

\section*{51⁄" \({ }^{\prime \prime}\) DISKETTES UERBATIM DATALIFE}
SS/DD SOFT SECTOR . . . . . . . . . . . . . . . . . . . . . . . 29.95
SS/DD 10 SECTOR HARD
29.95
HASHUA
SS/SD SOFT SECTOR
WITH HUB RING
\(\$ 19^{95}\)
Ask about our full line of Nashua diskettes BEST BUY

USIT DURITG
OUR EXPATDED REAIL STOAE HOURS SATURDAY 10 to 3


\section*{ \\ }

\section*{R.F. ELECTRONICS} , mhat culvonu ALL PREPAID ORDER PERSONAL CHECKS HELD FOR CLEARANCE - NO MINIMUM ORDER

CIRCLE 27 ON FREE INFORMATION CARD


Sute of the art technology brings you this superior Sinewave Superboard. It has no internal connection to TV, RF modulator built on the board, AGC for stability and tunes the entire band
with a varactor tuner and multi-turn pot. A high quality platedwith a varactor tuner and multi-turn pot. A high quality plated-
thru circuit board with silk-screened parts layout, easy to follow, fully illustrated instructions and quality parts make this kit easy o assemble. The beautifully finished cabinet will add a touch of
class to the many hours of enjoyment you will receive building class using this kit.
and using

\section*{MICROWAVE PROBE BRAND \\ \(\square\) KMP 2030 Micro Probe Kit \(\$ 24.95\)}

\(\square\)

\(\square\) PCM 2000 Micro PCB only \(\$ 4.95\) \(\$ 3.00 \mathrm{~S} / \mathrm{H}\)
\(\square\) MPD 2000 Micro 20" Dish
\(\$ 9.95\) post paid. Refundable with order

\section*{ZENITH M1 \\ FV-5}

Phase Video


KZM 2083 M1 FV-5 Kit \$199.95 + \$6.95 S/H
KZO 2084 FV-5 Kit (minus M1) \(\$ 149.95+\$ 6.95\) S/H
\(\square\) ZMO 9151 M1 Board only \(\$ 89.95+\$ 5.95\) S/H
This advanced baseband video inversion/sync suppression system which is most often used nationwide is one of our most popular kits. It features AGC for stability, RF modulator built on the board, no internal connection to T.V. and full band variable
tuning. High quality parts, fully illustrated instructions, pre tuning. High quality parts, fully illustrated instructions, pre-
punched cabinet and plated-thru/solder-masked P.C. board punched cabinet and plated-thru/solder-masked P.C. board
make this kit a breeze to assemble. The M1 varactor tuner board is assembled and tested and need only be interconnected to the FV-5 board. The completed circuitry is then placed in the beautifully finished cabinet. Place your order today.


\section*{SE, INC.}

641 Academy Drive - Northbrook, III. 60062 • (312) 564-0104

\section*{THE SOLUTION COMPUTER}

An Affordable 64 K Assembled Computer With These Features:

- Fully compatible with Apple \({ }^{8}\) II
- Original design
- Fully assembled and tested
- Detachable keyboard for easy use, upper lower case.
- Uses \(64 \mathrm{~K} \times\) Dynamic Ram
- 9 on board peripheral connectors for expansion.
- Uses 6502 mpu
\(\$ 675.00\) each (Monitor not included) The Solution Computer is the answer for people who realize a great product when they see one. Many othe Computer Send for a free color brochure to day.

\section*{UHF TV PREAMP}


Features: - 25 dB gain

Your reception will dramatically improve! This unit will enable you to pull in signals you never knew were there!
For both indoor and outdoor use. Input and output impedance 75 ohm. No adjustment! Easy assembly.
JH-O Kit
\(\$ 23.95\)


Combine both audio and video output onto
channel 3 or 4 of your T.V. set
Single J.C. chip (MC 1374) makes for quick and easy assembly. Single adjustment controll A must for every video recording or computer enthusiast.
VH-O Kit
\$19.95


MIC-3300A
Carrying Case

iPECIFICATIONS: - Freq. Range: \(470-899\) nHz - Output: Channel: 3 - Input: 75 ohm

\section*{TTL/CMOS}

LOGIC PROBE
- 4 LED states
- Pulse memory
- Supply Voltage \(3 \sim 18\) VDC TTL CMOS checking made easy!


\section*{LOGIC}

PULSAR PROBE
- Easily repair logic circuits
- .5 Hz or 500 Hz signal
- External Sync Input
- Supply Voltage \(3 \sim 18\) VDC

L201A
\$34.95

TA-802 160 WATT TOTAL 80W + 80W STEREO AMP KIT
This is a solid state all transistor circuitry on board stereo amplifier. Power output employs 2 pairs of matching Darlington transistors. T.H.D. less than . \(05 \%\) between DC to 200 KHz . Pwr supply requires 30 VCT \(2 \mathrm{amp} \times\) FMR


\section*{FOR INFORMATION CALL (312) 564-0104}

\section*{LOW TIM DC STEREO}

PRE-AMP KIT TA 2800
Incorporates state of D.C. design that gives a frequency response from \(0 \mathrm{~Hz}-100 \mathrm{KHz}=\) .5 dB . - Features tone defeat switch, loudness treble, midrange, bass, balance. - TA-2800 contains quad Bifet op-amp to develop T.H.D of \(.005 \%\) at rated output - Input sensitivity phone 2.5 MV tuner, aux, tape play 100 MV , 100 K - Power supply \(\pm 15\) volt DC at 2 A . Kit comes with regulated power supply, all you need is a \(15-20\) VCT 2 amp . XFMR.
Only \(\$ 44.50\)
XFMR

\section*{\(\$ 4.50\) ea.}

\section*{AMATEUR}

MICROWAVE RECEIVER KIT 1.9-2.5 GHZ \(\qquad\)
PS-1 Assembled 32 element antenna \(\$ 19.95\) PS-2 20 dB gain microwave receiver
kit with variable power supply kit
\(\$ 50.00\)
PS-3 Complete package PS-1 \& 2 ... \$65.00
MOUNTING HARDWARE INCLUDED

\section*{MICROWAVE PREAMP! NEW}

Use with PS-3 Kit. Adds 20-25 dB gain to boost reception distance.
- Low Noise
- High Gain
- Can be used with all existing stop sign board receivers
- \(1.9-2.5 \mathrm{gHZ}\) freq. range

PS-4 (Kit)

\section*{APPLE II® COMPATIBLE SLIM DISK DRIVE}

RUNS QUIETER THAN THE ORIGINAL! New - guaranteed! Only \(6^{\prime \prime} w \times 1 / /^{\prime \prime} h \times 10^{\prime \prime} \mathrm{d}\)
Complete with a cable. Runs with Apple controller Apple controller
or our optional or our opti

\section*{Now only}
\$224.95
SOLID STATE STEREO GRAPHIC EQUALIZER PRE AMP KIT TA-2500

\section*{-}

Specifications: - Total Harmonic Distortion Less than 0.05\% - Intermodulation Distortion: ( \(70 \mathrm{~Hz}: 7 \mathrm{KHz}=4: 1\) SMPTE Method) Less than \(0.03 \%\) - Frequency Response: Overall \(10 \mathrm{~Hz} \sim\) \(100 \mathrm{KHz}+0.5 \mathrm{db} .-1 \mathrm{~dB}\). - RIAA Curve Deviation: (Phono) \(+0.2 \mathrm{~dB} .-0.2 \mathrm{~dB}(30 \mathrm{~Hz} \sim 15 \mathrm{KHz})\) - Channel separation (at rated output 1 KHz ) - Phono. Tuner. Aux and Tape Monitor better than 70 dB . - Input sensitivity and impedance ( 1 KHz for rated output)
Phono: 2 MV 47 K ohms Aux: 130MV 50K ohms. Tuner: 130 MV 50 K ohms Tape: 130 MV 50 K ohms. Graphic Equalizer control: 10 Band Slide Control. Frequency Bands: 315 Hz . \(\mathrm{G} 3 \mathrm{~Hz}: 125 \mathrm{~Hz}: 250 \mathrm{~Hz}: 500 \mathrm{~Hz}: 1 \mathrm{Khz}: 2 \mathrm{KHz}\) \(4 \mathrm{KHz}: 8 \mathrm{KHz}: 16 \mathrm{KHz}\) also with on panel selector for Phono. Tuner. Aux 1 and Aux 2. Power Supply: 117 VAC
Kit comes with all electronic components transformer, instructions and a \(19^{\prime \prime}\) rack mount type metal cabinet
MODEL TA-2500
\(\$ 119.00\) PER KIT

MONITOR (12")

- Orange amber screen
- 18 MHZ bandwidth
- High resolution graphics

Composite video 1/O 75/10 K ohm impedance. A phenomenal quality monitor for your computer. 110 VAC.
MON-1
\(\$ 119.95\)
APPLE II
PERIFERAL CARDS
80 column card . . . . . . . . . . . . . \(\$ 109.95\)
16 Ram card . . . . . . . . . . . . . . . . \(\$ 44.50\)
Z80 cpm card. ................. . \(\$ 99.95\)
Disk controller card .......... . \(\$ 59.95\)
Eprom writer card ............. \$84.95

\section*{INFRA-RED REMOTE}

CONTROL SWITCH KIT
Infra-red Remote
Control switch can be used to control appliances up to 500 W . The TK-41 has effective control up to 10 meters. No antenna needed. Features latest IC controller which excludes interferences from light or AC pulse signal.
TK-41 Kit
\$24.95

\section*{CALL TOLL FREE \\ 1-800-323-1327}

\section*{TY-45}

20 STEP LED

\section*{POWER LEVEL INDICATOR KIT}

This new stereo level indicator kit consists of 403 -color LED's to indicate sound level output of your amplifier from -57 dB to 0 dB . Comes with an attractive silk screen printed panel. Has selector switch to allow floating or gradual output indicating
Kit includes all parts, Front panel and power supply.

TY-45 KIT
\$34.95

\section*{MICRO COMPUTER POWER SUPPLY TR-626}

The TR-626 is a power regulator for use with popular microcomputer circuits. Features:
- \(\pm 5 \mathrm{~V} 6 \mathrm{~A}\)
- - 5 V .5 A
- +12V 1.5 A
- -12V.5A

Each unit contains current limit protect circuit and two Darlington


A very popular device designed to listen to sounds \& voices through rooms or 3 ft . thick concrete walls. Place listening sensor against wall and earphone in ear. Adjust volume control! Hear clearly to things you might not want to!
CM-8

\(\$ 89.95\)

Minimum order \(\$ 15.00\). Add \(10 \%\) shipping on orders under \(\$ 35.00\). Orders over \(\$ 35.00\), add \(5 \%\). Catalog - \$1.00. Visa \(\mathbb{Q}\) Mastercharge acceptable.


\title{
마ㅁㅣㅐㅁNNN800-346-5144
}


\section*{More BLOCKBUSTER BARGAINS!}

\section*{Parallel, TTL Input I/O "Selectric" \({ }^{\text {B }}\)}


Removed from working systems, these fantas ic machines have buitt-in driver and decoder circuitry and take TTL level, 6-bit character, by most any micro. Use a typewriter (with add'
binals. Easily driven repeat circuitry) or as a KSR IO printer or both. Requires 115.60 Hz for typewriter motor 5 VDC for TTL and 24 VDC for solenoids Table Top" style case. Each "Selectric" 10 machine is complete and in operational condition. Includes schematics, data case, platen and ribbon.
\$21.00ea.

> Type Element

SAVE!!! Untested version of the above, otherwise whole \& complete. May require some
Diablo Daisy Printer HI-Type II


1355-WP Word Processing Daisy Printer
Pre-owned, TESTED \& Operational!
- Uses Xerox Metal Wheels or Plastic Wheels - Original OEM Interface (Diablo Interface) - Requires \(\pm 15 \mathrm{~V}\) ( \(a 5 \mathrm{FA}\) \& 5VDC (a 5A - Positional access to 1/120 "Horiz" "1/48 "Vertical - USED BY XEROX, WANG, \& OTHERS
- Heavy Duty Printwheel Motor and \(15^{\prime \prime}\) Frame

These fabulous daisy printers feature \(35-40 \mathrm{cps}, 10 \& 12\) pitch as well as proportional space, and plotter capabilities. Only a power supply and interface are required for full printer capability. Fully tested and operational, ready to configure for the interface of your choice. Platen and IO data included


Forms tractor for the above
5 99.00
Spare P.C. Board Set (6 P.C. Cards) ..... \({ }^{\$} 279.00\)
Spare Printwheel carrier assembly ..
Serial \& Parallel Interface for Above
Power Supply
\({ }^{\$ 3} 329.00\)
\(\$ 295.00\)

We Other New \& Used FLOPPY DRIVES, DISK DRIVES. PRINTEAS \& MORE at BARGAIN PRICES Write or Call for Our Latest Flyer NOW III
omputer Droducts \& eripherals nlimited
\begin{tabular}{|lr|}
\hline \multicolumn{2}{|c|}{ POPULAR CHIPS } \\
LM 301 & .49 \\
LM 380 & \(\mathbf{1 . 2 9}\) \\
LM 386 & .89 \\
LM 565 & \(\mathbf{1 . 0 0}\) \\
MC 1330 & \(\mathbf{1 . 2 5}\) \\
MC 1350 & \(\mathbf{1 . 1 5}\) \\
MC 1358 & \(\mathbf{1 . 2 5}\) \\
MC 1458 & .49 \\
MC 1496 & \(\mathbf{1 . 5 0}\) \\
LM 1889 & \(\mathbf{2 . 5 0}\) \\
7805 & .80 \\
7808 & .80 \\
7812 & .80 \\
7815 & .80 \\
7818 & .80 \\
MV 2109 & .69 \\
2N2222 & .30 \\
MC 1349 & \(\mathbf{1 . 7 9}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline  & \begin{tabular}{l}
MITSUMI \\
UES A55F VARACTOR TUNER CHAN. 14-83 300 ohm INPUT \(\$ 17.95\)
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
DELUXE PARTS ASSORTMENTS \\
\#1 Resistors a Trimpots 68 k watt, \(5 \%\) resistors \& 5 PT-15 10 K trimpots. 1 each-51. 75, 100, 470. \(1.5 \mathrm{~K}, 3.6 \mathrm{~K}, 51 \mathrm{~K}, 470 \mathrm{~K}\). \(13-1,2 \mathrm{~K}, 2-220,3-100 \mathrm{~K}\). 6-330, 6-12K, 7-910, 9 \\
\(3.3 \mathrm{~K}, \& 14-4.7 \mathrm{~K}\) \(\$ 5.25\) each \\
\#2 Capacitor "A" Monolythics - 1-560pf, 7 .1 mfd \& \(1-.22 \mathrm{mfd}\). Silver Micas - 2-10pt, \& 1 each of \(43 \mathrm{pf}, 110 \mathrm{pf}\). 560 pt, \(1200 \mathrm{pt}, 3000\) or 3300 pf. \(\$ 5.95\) each \\
*4 Coll \& Chokes 1 each of 15,33 , and 100 (uh) micro henries chokes 1 -variable RF coil (same as =49A537MPC) \(\$ 3.25\) each *5 IC's, Sockets, \& Semi's 1 each of: LM565, MC1330, MC1350, MC1496, LM1889, 7812, 7818, 2N2222A, MV2109, heat sink 2-MC1458, 4 1N4002, 4-8 pin, 2-14 pin, 1-16, \& 1-18 pin socket. ( 564 not included) \(\$ 11.95\) each
\end{tabular}} \\
\hline \begin{tabular}{l}
UHF AMP KIT \\
25 db gain stripline PC board using \\
(2) BFR-90's \$10.95 power supply for above \$3.49
\end{tabular} & \begin{tabular}{l}
MINI FAN 3.125" SQ. \\
40 CMF \\
115VAC-60hz \\
REMOVED FROM \\
NEW EQUIP. \\
TESTED \\
\(\$ 6.95\)
\end{tabular} \\
\hline
\end{tabular}

NETWORK SALES, INC. 2343 W. BELMONT AVE. CHICAGO, IL. 60618 312-248-3202
\({ }^{(C)}\) COPYRIGHT 1983 NETWORK SALES, INC

TERMS: Visa, M.C., Check, Money Order or COD (add \(\$ 3.00\) ). Min. Order \(\$ 10.00\). Add \(\$ 2.50\) S\&H for USA. III. add \(7 \%\) Tax. MAIL ORDER ONLY. Prices subject to change without notice. Phone Orders Welcome. WRITE FOR OUR MONTHLY UN-ADVERTISED SPECIALS

CIRCLE 90 ON FREE INFORMATION CARD


STV
Complete with \(5^{\circ}\) fliourescent tube, powerful bulb and handy strap. Runs on 3 pcs \(1.5 \mathrm{~V}{ }^{\circ} \mathrm{C}\) ' size batteries spotight and flourescent light. Its superior quaity is ideal for indoor or outdoor use

LOW PRICE \(\$ 6.50\)
SANYO UHF VARACTOR TUNER Tuning voitage +1 to +28 VDC . Input impedance
750 If band width \(7-16 \mathrm{MHz}\). Size \(2 \% \times 1 \% \times 1 / 4\) 75ת. If band width 7-16
Supply voltage 15 VDC

Model 115-B-403A, Video IF 45.0 MH
Model 115-B-405A, Video IF 625 MHz \(\$ 19.95\)
Tuner is the most important part
let those \(\$ 19,00\) tuners fool you
let those 1900 tuners fool you
All units are brand new from Sar
please specify model number.


MARK IV - 15 STEP LED POWER LEVEL INDICATOR KIT This new stereo indicator kit consists of 364 -color LED \(s\) ( 15 per channel) to indicate the sound level
output of your amplifier from \(-36 d \mathrm{~dB}\) to +3 dB . output of your ampifier from -36 dB to +3 dB .
Comes with a well designed sik screen printed plastic panel and has a selector switch to allow floating or gradual output indicating. Power supply is \(6-12 \mathrm{VDC}\) with THG on board input sensitivity controls This unit can work with any ampifier from 1 W to 200 W . Kit includes 70 pcs driver transistors, 38 pcs matched 4-color LED's, all electronic components. PC Board and front panel MARK IV KIT \(\mathbf{\$ 3 1 . 5 0}\)


FLOURESCENT AUDIO LEVEL MONITOR This is the kin't of VU monitor that is being used by most tamplifer manufacturers. C s are used os simplify
circuit layout: Easy to assemble and can be used with circuir layout Easy to assemble anc car be used with
all power level ampifiers. Power requirement 12 VDC.


TE-221 KIT For Just \(\$ 28.50\) (Limited Stock)


Dynamic Bias Class "A" circuit design makes this unit unique in its class. Crystal clear, 100 watts power output will satisfy the most picky fans. A perfect amp.
Specifications - Output power 100 W RMS into \(8 \Omega\) 125 W RMS into \(4 \Omega\). Frequency response \(10 \mathrm{~Hz}-100 \mathrm{KHz}\) - THD less than \(0.01 \%\) - SN ratio better than 80 dB - Input sensitivity IV max. Power supply \(=40 \mathrm{~V}\) at 5 A .

\section*{1 WATT AUDIO AMP}

All parts are pre-assembled on a mini PC Board
Supply voltage \(6-9 \mathrm{VDC}\)
6W AUDIO AMP KIT
TBA810
er Supply
6 -18VDC Only \(\$ 7.50\) ea
'FISHER' 30 WATT STEREO AMP MAIN AMP ( \(15 \mathrm{~W} \times 2\) ). Kit includes 2 pCs. Fisher PA 301 Hybrid IC. all electronic parts with PC Board
Power supply \(=16 \mathrm{VDC}\) (not included). Voltage gain \(33 \mathrm{~dB}, 20 \mathrm{~Hz}-20 \mathrm{KHz}\).

Super Buy
Only \(\$ 18.50\)


LASER
SUPER LATERN Bniliant flourescent lantern with \(9^{+} 6\) watt flourescent tube. Features include light with 9 V pre-focus bulb; ight with 9 V pre-focus bulb; stant or time intervals o sonic alarm; Twin blinker red amber flashing or red \& amber flashing on time intervals, Fully adjustable
nylon strap. Operates from D size batteries or plugs into vehicle cigar lighter socket.

SPECIAL \$11.95
6-WAY A/C ADAPTOR
Input: 110 VAC Output: \(3 \mathrm{~V}, 4.5 \mathrm{~V}, 6 \mathrm{~V}, 75 \mathrm{~V}\) and
12 VDC Current: 300 mA .
OUR LOW PRICE
\(\$ 5.50 \mathrm{ea}\).


49 MHz transmitter signal trolled locks on 49 MHz transmitter signal. On panel VU meter, moni-
tors the signal strength from the microphone. Stanlors the signal strength from the microphone. Stan-
dard phone jack outlet connection to a P.A. or other phone input. 9 V battery included. This protessionai set is ideal for on stage, in field, church, in house or outdoor use


\section*{A GOOD BUY}
at \(\$ 65.00\)
TA-800
120W PURE DC POWER STEREO AMP KIT Getting power hungry from your small amp? Here's a good solution! The TA-800 is a pure DC amplifier with ated to give you a true reproduction of the music. On board tone and volume controls combined with builtin power supply make the TA-800 the most compact stereo amp available. Specifications: \(60 \mathrm{~W} \times 2\) into
sta stereo amp available. Specitications: \(60 \mathrm{~W} \times 2\) into
\(8 \Omega\) Freq Range: \(0 \mathrm{~Hz}-100 \mathrm{KHz} \pm 3 \mathrm{~dB}\). THD: \(01 \%\) or better. SN Ratio: \(80 d B\). Sensitivity: 3 mV into 47 K Power Requirement: \(\pm 24-40\) Volts

WHISTLE ACTIVATED SWITCH BOARD All boards are pre-assembled and tested. You whistle to its FET condenser microphone from a
distance as far as 30 feet away (sensitivity can be easily adjusted), and it will turn the switch on. If you whistle again it will turn off. Ideal for remote contsol toys, electrical appliance such as lights, coffee pots. TV, Hi-Fi, radio or other projects Unit works on
9VDC Model 968
\(\$ 2.50\) ea.
LOW TIM DC STEREO PRE-AMP KIT TA-1020 Incorporates brand-new DC design that gives a frequency response from \(0-100 \mathrm{KHz}=0.5 \mathrm{~dB}\). Added
features like tone defeat and loudness control let you tailor your own frequency supplies to eliminate power fluctuations!
Specifications: - THD TIM less than \(005 \%\) - Frequency response DC to \(100 \mathrm{KHz} \pm 0.5 \mathrm{~dB} \bullet\) RIAA deviation \(=0.2 \mathrm{~dB}\) • SN ratio better than 70 dB Sensitivity: Phone \(2 \mathrm{mV} 47 \mathrm{~K} \Omega\), Aux \(100 \mathrm{mV} 100 \mathrm{KI} \Omega\) •
Output level \(13 \mathrm{~V} \bullet\) Max output 15 V • Tone controls Output level \(13 \mathrm{~V} \bullet\) Max output \(15 \mathrm{~V} \bullet\) Tone controls:
Bass \(=10 \mathrm{~dB}\) il 50 Hz . Treble -10 dB ir 15 Hz Bass \(=10 \mathrm{~dB}=50 \mathrm{~Hz}\). Treble \(=10 \mathrm{~dB}\) ir 15 Hz -
Power supply \(=24 \mathrm{VDC}\) an 0.5 A Kit comes with regulated power supply. All you need is a 48 VCT regulated power supply
transformer til 0.5 A

Only \(\$ 44.50\)
Transformer
\(\$ 4.50\) ea.


UNIVERSAL
NI-CD BATTERY

\section*{Charges 9V, AA, Cor D size \(\mathrm{N} \cdot-\mathrm{CD}\) batteries all at one Part No. 050-0190 \\ SUPER FM WIRELESS MIC KIT \\ This new designed circuit uses high FREQ FET transistors with 2 stage pre-amp. Transmits FM range ( \(88-120 \mathrm{MHz}\) ) up 102 blocks away and with the with the kit allows you to pick crophone sound within 15 it away. Kit includes all electronic parts, OSC coils and PC Board. Power supply 9VDC \\ FMC-105 \$11.50 per Kit \\ PROFESSIONAL FM WIRELESS MICROPHONE}

Made by one of the leading Japanese manufacturers. This factory assembled FM wireless
microphone is powered by two AA size batteries it transmits in the range of \(88-108 \mathrm{MHz}\). Element is buit in a plastic tube type case with an omni-directional electronic condenser microphone unit. By using a standard FM radio, signal can be heard anywhere on a one acre lot Sound quality was judged "very ON SALE \(\quad \$ 8.25\) ea.

HEAVY DUTY 500 mA
MULTIPLE AC-DC ADAPTOR
For all battery operated elect
500 mA with LED indicator


Input: 1
Output:
3.4.5
Model SA-8112A
\(\$ 25.00\) ea.
SANYO ANTENNA SIGNAL BOOSTER This Booster is specially designed for UHF Channels
(14-83). After installing (between the antenna input (14-83). After installing (between the antenna input
cable and the UHF tuner), this unit will provide a cable and the UHF funer), this unit will provide a minimum of 10 dB gain, that is approximately 2 times
better than you are seeing now. Ideal for those who better than you are seeing now. Ideal for those who ive in apartments that can not put up an outdoor
antenna. Small in size, only \(2^{\prime \prime} \times 11 / 2^{\prime \prime} \times 1^{\prime \prime}\). Supply voltage is 15 VDC.

\section*{Model 001-0076}
\(\$ 12.50\)

PROFESSIONAL REGULATED
VARIBLE DC POWER SUPPLY KIT
All solid state circuitry with high efficiency power tranvoltage can be adjusted from 0.30 V at 1 A current limited or \(0-15 \mathrm{~V}\) at 2 A current limited. Internal resist. ance is less than \(0.005 \Omega\). nipple and noise less than 1 mV , dual on panel meters for voltage and current reading. also with on board LED and audible over load indicator. Kit comes with pre-driled PC Board, instrucions, all necessary electronic components, transormer and a prolessional looking metal cabinet. The best project for school and the most useful instrument or repairmen. Build one today!

\(\$ 59.50\) per Kit

* SPECIAL * Excellent Price! Model 001-0034 \(\mathbf{\$ 2 9 . 5 0}\) per Kit Transformer \(\$ 10.50\) ea.
TA-322 30 WATTS TOTAL 15W + 15W STEREO AMP KIT This is a solid state all transistor circuitry with board stereo pre-amp for most microphone or phonè input. Power, output employs a heavy duty Power hybrid IC. Four built on board controls for, volume, balance, treble and bass. Power supply
requires 48 VCT
2.5 A transformer. THD of less than equires 48 VCT 2.5 A transformer. THD of less than
\(0.1 \%\) between \(100 \mathrm{~Hz}-10 \mathrm{KHz}\) at full power (15 Watts 15 Watts loaded into \(8 \Omega\) )

LOW T.I.M. TRANSISTORS \(100 W+100 W\)
- Employs Hitachi low noise I.C. for pre-amp - Max output 16 V P-P (non distortion) - With hi-low filter, and tone defeat circuit - Rear power amp with short circu
protection. Giant heat sink for maximum results. Tone controls: 14 dB . All components (except pots for vol ume, and tone controls) are pro-assembled, the quality is guaranteed, - Power supply DC \(\pm 35 \mathrm{~V}-50 \mathrm{~V}\)
 Part \#370-0340 ..... \(\$ 85.00\) ( \(68 \mathrm{~V}-80 \mathrm{~V}\) CT 6 AMP) Part \#670-0220 ..... \$24.50

\section*{\(60 \mathrm{~W}+60 \mathrm{~W}\) O.T.L. AMP}

Stereo pre-amp + tone control + power amp. Al in on unit, fully assembledl Compact in size: \(7 \times 4 / / \times 21 / 2\)
Can be fitted into most cabinets. Power tranis using \(25 \mathrm{C} 1667 \times 4\) to give a max output of \(60 \mathrm{~W}+60 \mathrm{~W}\) \((8 \Omega)\)
-
Frequ - Frequency response: \(20 \mathrm{~Hz}-85 \mathrm{KHz}(-1 \mathrm{~dB})\) - Tota harmonic distortion: \(0.02 \%(1 \mathrm{KHz}) \cdot\) Signal Noise Ratio
88 dB (open loop) . Tone control: \(100 \mathrm{~Hz}=16 \mathrm{~dB} 10\) 88 dB (open loop) - Tone control: \(100 \mathrm{~Hz}=16 \mathrm{~dB} 10\) \(\mathrm{KHz}=14 \mathrm{~dB}\) - Dynamic range: 60 dB - Power Supply
\(48 \mathrm{~V}-70 \mathrm{~V} 5 \mathrm{Amp}\). Filter Capacitor: \(4700 \mu 75 \mathrm{~V}\) orbetter.


MODEL: SA-4520
Part \#370-0350 ...... \(\$ 39.95\) ea 1 Transformer Part \#670-0230... \$22.50 ea 2 Filter Capacitor \(4700 \mu\) F 70 V \(\$ 6.50\) ea.

\section*{MAGNETIC HEAD EQUALIZER}
- Standard RIAA curve for all kinds of magnetic heads - 3 guaran crossover circuif for best results - Output voltage Supply: 24 V.D.C


MODEL: MA-142
Part \#370-370 . . . . \$6.95 ea.
STEREO MIC. AND ECHO MIXER FOR STEREO AMPLIFIER SYSTEM The circuitry employs all integrated circuits, BBD type echo circuit, echo time can be adjusted (max. . 30 Msec.) Also wth a microphone preamp on the board
Fully assembied Fully assembled


20 STEPS BAR/DOT AUDIO LEVEL DISPLAY KIT
This new designed audio levol display unicis using a now integrated oircuit from National Semiconductor to drive 20 pieces of oolor LEDs (green, yellow and red) on
each channel. It provides two types of dispiay method for selection 'bar' or dot. The display range is from -57 dB to 0 dB . Kit is good for any amplifier from 2 wati 10200 watts' Power supply requires 12 V AC or DC. So is great for cars as well Kit comes with printer circuil components, switches, and silk screen printed professional front panel


MODEL: TY-4
MODEL: TY-45
Part \#370-0280..... \(\$ 38.50\)


CIRCLE 99 ON FREE INFORMATION CARD



\title{
BETA Electronics \\ 1700 E. DESERT INN RD., SUITE 222 LAS VEGAS, NEV. 89109
}

\section*{"The Deluxe II"}
"LEADER IN THE BEST VIDEO CIRCUITS FOR THE EXPERIMENTERS."


The ultimate in UHF sine wave converter techology with modulated audio. Easy to build with fully illustrated plans. Outstanding video clarity and stability. Easy to build with fully illustrated plans. Outstanding video clarity and stability.


FITS DIRECTLY INTO YOUR DELUXE II FOR CONVENIENT CHANNEL SELECTION.

NE 564 SUBSTITUTE CIRCUITS AVAILABLE \(\wp^{\circ}\) (PLUGS DIRECTLY INTO THE NE 564 POSITION) \$4.95 EACH PLUS \(\$ 1.50\) SHIPPING.
"THE Z BOARD"
PC BOARD, PLANS, PARTS \& ENCLOSURE \(\$ 119.95\) PLUS SHIPPING S4.95 EACH


A powerful circuit with a challenge.
The best in UHF "pulse suppressed" circuits.
Suppressed horizontal synchronization with video inversion and modulated audio that mates with your Zenith M1 module.

Fully illustrated plans for easy assembly.
QUANTITY DISCOUNTS AVAILABLE
PRICES SUBJECT TO CHANGE WITHOUT NOTICE
CALIF. ORDERS ADD 6\% SALES TAX
VISA/MST MONEY ORDERS NO PERSONAL CHECKS

SPARTAN Bectorniss nc.


COMPUTER CARE KIT
The Preventative maintena
office and home computer Zero Charge Anti-Static Sci
and Keyboard cleaner Zero
Charge Anti-Stat
SGL WABER \(\$ 35.95\)
Protect your
computer and
computer and DG115S
electronic equipment (6 Outlet) \(\because=2+5\)
from voltage spikes


REFURBISHED MONITORS

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{SEMICONDUCTOR SPECIALECG Equivalent-Thordarson} \\
\hline TM125-15 & TM5021- 12 & TM5127--53 \\
\hline TM712-1.06 & TM5070-17 & TM531-895 \\
\hline TM1155-2.92 & TM955M-80 & TM5444-1.06 \\
\hline TM123A-22 & TM142A-16 & TM5455-53 \\
\hline TM5804-40 & TM9410-53 & TM145A- 17 \\
\hline
\end{tabular}

\section*{BECKMAN} CIRCUITMATE 20
8 functions and 30 ranges
Diode/transistor test function
auto-polarity, auto-zero, and
auto-decimal - 10 Amps AC and
Gain Test (hFE) - Conductance

\(\$ 64.95\)
Jerrold 36 Channel Remote CATV Converter
w/on/off Fine Tuning \(\$ 94.95\)
58 Channel Wireless \(\$ 109.95\)


40 Channel VHF to UHF - Block Converter 28.95 Ea.
24.954 \& up

Deluxe Version - Features fine tuning knob, matching X former \& 2 cables \(\$ 38.95\)

\section*{ADVERTISING INDEX}

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Free Information Number} & 52 & Paia & 102 \\
\hline 46 & Acorn . . . . . . . . . . . . . . . . . . . . . . 99 & 38 & Philips ECG & 27 \\
\hline 3 & Active Electronics . . . . . . . . . . . . 136 & 29,83 & Phillips/KCS & 120 \\
\hline 80 & Advance Computer Products ..... 117 & 97 & Pomona .... & Cover 4 \\
\hline - & Advance Electronics. . . . . . . . . . . . 13 & 30 & Professional Video I & 116 \\
\hline 12 & All Electronics . . . . . . . . . . . . . . . 126 & 43 & PTS & 105 \\
\hline 67 & AMC Sales . . . . . . . . . . . . . . . . 102 & 61 & Radio Shack & 127 \\
\hline 21 & Appliance Service. . . . . . . . . . . . . 99 & 79 & Ramsey Electronics & 125 \\
\hline 87 & AP Products . . . . . . . . . . . . . Cover 3 & 57,17 & Ramdom Access & 98,99 \\
\hline 60 & BBC Metrawatt . . . . . . . . . . . Cover 2 & 27 & R.F. Electronics & 132 \\
\hline 10 & Beckman Instruments ........ 89-92 & 19 & Regency Electronics & \\
\hline - & Beta . . . . . . . . . . . . . . . . . . . . . . 141 & - & Scientific Systems. & 132 \\
\hline 77 & B \& K . . . . . . . . . . . . . . . . . . . 31 & 25 & SCR & . 116 \\
\hline - & Bullet . . . . . . . . . . . . . . . . . . . . . 121 & 64,55 & SEI. & . 120,133 \\
\hline 7 & Calvert . . . . . . . . . . . . . . . . . . . . . 29 & 82 & Sintec & \[
12
\] \\
\hline 8 & Cambridge Learning . . . . . . . . . . . 24 & 58 & Solder Craft & 106 \\
\hline - & C \& D . . . . . . . . . . . . . . . . . . . . 100 & 23 & Solid State Sales. & . 119 \\
\hline 18 & CEI. . . . . . . . . . . . . . . . . . . . . . 111 & 36 & Spartan & 142 \\
\hline 34 & Chaney Electronics. . . . . . . . . . . 140 & - & Symmetric Sound S & ms . . . . . . . 98 \\
\hline 37 & Chemtronics . . . . . . . . . . . . . . . . . 14 & 100 & Tab Books.... & 32 \\
\hline - & CIE . . . . . . . . . . . . . . . . . . . . . 34-37 & - & Tektronix & \\
\hline - & Command Products ............ . 106 & 5 & Teltone . & 98 \\
\hline 86,35 & Communications Electronics .... 108.2 & 89 & Video Electronics & 99 \\
\hline 88 & Components Express Inc. ....... 121 & 9 & Video Guard. & 116 \\
\hline 56 & Contact East . . . . . . . . . . . . . . . . 99 & 91 & VIZ. & 30 \\
\hline 68 & Computer Products Peripherals. . . 136 & 13 & Westeck & 132 \\
\hline - & Daetron . . . . . . . . . . . . . . . . . . . . 22 & & & \\
\hline 65 & Digi Key. . . . . . . . . . . . . . . . . . 134,135 & & & \\
\hline 11 & Digitron . . . . . . . . . . . . . . . . . . . . 140 & & & \\
\hline 53 & Direct Video . . . . . . . . . . . . . . . . . 102 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{THE BEST PLACE to BUY, SELL or TRADE NEW and USED EQUIPMENT NUTS \& VOLTS MAGAZINE}} & \multirow[b]{2}{*}{Nuis a voits} \\
\hline 99 & Dokay Computer Products .... 138.139 & & & \\
\hline 54 & DTI
\[
.14
\] & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
NUTS \& VOLTS MAGAZINE \\
BOX 1111 -E P PLACENTIA, CA 92670 \\
(714) \(632-7721\)
\end{tabular}}} &  \\
\hline 22 & EICO . . . . . . . . . . . . . . . . . . . 100 & & & \multirow[t]{5}{*}{} \\
\hline 59,- & Electronic Book Club ..... 21,109,110 & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
(714) 632-7721 \\
Join Thousands of Readers Nationwide Every Month ONE YEAR U.S. SUBSCRIPTIONS \$7.00 - 3rd Class - \(\$ 12.50\) - 1st Class \(\$ 25.00\) - Lifetime - 3 rd Class wisk
\end{tabular}}} & \\
\hline 6 & Electronic Specialists, Inc. . . . . . . . 140 & & & \\
\hline 33 & Electronic Warehouse . . . . . . . . . . . 33 & & & \\
\hline 78 & Electronic Warehouse Corp. . . . . . 102 & & & \\
\hline 51 & ETCO . . . . . . . . . . . . . . . . . . . . . 126 & & & \\
\hline 39 & Etronix . . . . . . . . . . . . . . . . . . . . 140 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{vecececececerececepecec}} \\
\hline - & ETT . . . . . . . . . . . . . . . . . . . 113,114 & & & \\
\hline 40 & Firestik II ....................... 106 & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & John Fluke MFJ CO. Inc. . . . . . . . . 7 & & & \\
\hline - & Fordham . . . . . . . . . . . . . . . . . 25,39 & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
FREE CATALOG \\
CALL (215) 825-4990
\end{tabular}}} \\
\hline 76 & Formula International. . . . . . . . . . 137 & & & \\
\hline - & Galaxy . . . . . . . . . . . . . . . . . . . . . 106 & C & & \\
\hline - & GBC T.V. . . . . . . . . . . . . . . . . . . 100 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{EXPERIENCE - QUALITY - VARIETY veccecccceccecceccecel}} \\
\hline 71,73,74 & Gladstone . . . . . . . . . . . . . . . . . 22,94 & & & \\
\hline 96 & Global Specialties . . . . . . . . . . . . . . 24 & \multicolumn{3}{|l|}{recececececececececece} \\
\hline 4 & \multicolumn{4}{|l|}{Glouster Computer . . . . . . . . . . . . 106} \\
\hline 69 & \multicolumn{4}{|l|}{Goldsmith Scientific ............ 108} \\
\hline - & \multicolumn{4}{|l|}{Grantham College of Engineering . . 40} \\
\hline 50 & \multicolumn{4}{|l|}{Halix .......................... . 108} \\
\hline 75 & \multicolumn{4}{|l|}{Hal-Tronix . . . . . . . . . . . . . . . . . 140} \\
\hline 15,20 & \multicolumn{4}{|l|}{Heath . . . . . . . . . . . . . . Cover 2.53-55} \\
\hline 85 & \multicolumn{4}{|l|}{Hickok ........................ 28 隹} \\
\hline - & ICS . . . . . . . . . . . . . . . . . . . . . . . 107 & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{is available}} \\
\hline 94 & \multirow[t]{2}{*}{Illinois Audio . . . . . . . . . . . . . . . . . . . 100
Instrument Mart . . . . . . . 20} & & & \\
\hline 28 & & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{in microform.}} \\
\hline 41 & Jameco
\[
122,123
\] & & & \\
\hline 49 & JDR . . . . . . . . . . . . . . . . . . . . 128-131 & & & \\
\hline 70 & Jenson Tool. . . . . . . . . . . . . . . . . . . 99 & \multicolumn{3}{|c|}{\multirow[b]{2}{*}{University Microfilms}} \\
\hline 63 & J \& W Electronics . . . . . . . . . . . . . 99 & & & \\
\hline 48 & Kikusui .......................... . 9 & \multicolumn{3}{|c|}{International} \\
\hline 44 & L.I. Public Wholesalers . . . . . . . . 118 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline 93 & McIntosh . . . . . . . . . . . . . . . . . . . 26 & & & \\
\hline 66 & MFJ. . . . . . . . . . . . . . . . . . . . . . . 126 & \multicolumn{3}{|r|}{Please send additional information Name \(\qquad\)} \\
\hline 95 & Mouser Electronics . . . . . . . . . . . . 132 & \multicolumn{3}{|r|}{Institution} \\
\hline 16 & Multitech Electronics Inc. . . . . . . . . 11 & \multicolumn{3}{|l|}{} \\
\hline - & \multirow[t]{2}{*}{NESDA
\[
112
\]} & \multicolumn{3}{|r|}{State \(\quad\) Zip} \\
\hline - & & \multicolumn{3}{|r|}{\multirow{5}{*}{\begin{tabular}{ll}
300 North Zeeb Road & 30-32 Mortimer Street \\
Dept PR. & Dept. PR \\
Ann Arbor. Mi. 48106 & London WIN 7RA \\
USA. & England
\end{tabular}}} \\
\hline 90 & \multirow[t]{2}{*}{Network Sales Inc. . . . . . . . . . . . . . . . 136
NRI . . . . . . . . . . . . . . . . . . . . . 19} & & & \\
\hline - & & & & \\
\hline - & NTS . . . . . . . . . . . . . . . . . . . . . \(70-73\) & & & \\
\hline 62 & OptoEletronics Inc. . . . . . . . . . . . . 15 & & & \\
\hline
\end{tabular}


\title{
THE POMONA PROMISE \\ \\ We provide the design engineer with the best \\ \\ We provide the design engineer with the best patch cords made in this country. patch cords made in this country. Or anywhere.
} Or anywhere.
}


Quite a promise, you say? Well, quite a promise it is.
It was made before we designed our first patch cord. We decided our patch cords would occupy only one position in the market. The top.

Right now, there isn't a knowing professional in the electronics business who won't tell you we kept our promise.

Today, we offer you a variety of patch cords so extensive we feel we've got just the kind you need. And you know what, if we don't,
we'll design one for you.
At ITT Pomona Electronics, we know there is no such thing as standing pat. We also know that your needs change and your expectations become greater as the demands become more severe. To this end we will continue to create a better way. A better product.

That's a promise.
All of our products are described and illustrated in our General Catalog, and it's free. Just call (714) 623-3463 or 623-6751. TWX 910-581-3822. Write to us at CIRCLE 97 ON FREE INFORMATION CARD

ITT Pomona Electronics, a Division of ITT Corporation, 1500 E. Ninth St., Pomona, CA 91766.

In Europe: ITT CANNON BELGIUM S.A./N.V. Rue Colonel Bourg Str. 105 Space A (B.3) 1140 Brussels, Belgium. Phone: 02-7356094.

Our products are available through your favorite electronics parts distributor.```


[^0]:    - Suggested U.S. list price, elfective October 1, 1983.

[^1]:    *CALL TOLL-FREE 800-835-2246 EXT. 118 to order by phone, request
    further information or to inquire about becoming a distributor.

[^2]:    

    Cleveland Institute of Electronics, Inc.
    1776 East 17th Street, Cleveland, Ohio 44114 Accredited Member National Home Study Council
    YES... I'm shopping around for the right kind of career training in electronics-
    and ClE sounds well worth looking into. Please send me my FREE CIE school
    catalog-including details about the Associate Degree program-plus my FREE
    package of home study information!

    | Print Name |  |
    | :--- | :--- |
    | Address |  |
    | City | Apt. |
    | Age | Sip |
    | Check box for G.I. Bill information: $\square$ Veteran | $\square$ Active Duty |

    MAIL TODAY!
    RE-76

[^3]:    "Linear Applications. Motorola Inc., Semiconductor Products Sector

[^4]:    (please print)

[^5]:    *Managing Editor, Interface Age magazine

